• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Tan Delta Test | Loss Angle Test | Dissipation Factor Test

Electrical4u
Field: Basic Electrical
0
China

What Is Tan Delta Test

Principle of Tan Delta Test

A pure insulator when is connected across line and earth, it behaves as a capacitor. In an ideal insulator, as the insulating material which acts as dielectric too, is 100 % pure, the electric current passing through the insulator, only have capacitive component. There is no resistive component of the current, flowing from line to earth through insulator as in ideal insulating material, there is zero percent impurity.

In a pure capacitor, the capacitive electric current leads the applied voltage by 90o.
In practice, the insulator cannot be made 100% pure. Also due to the aging of insulators, the impurities like dirt and moisture enter into it. These impurities provide the conductive path to the current. Consequently, an electric leakage current flowing from line to earth through the insulator has a resistive component.

Hence, it is needless to say that, for good insulator, this resistive component of electric leakage current is quite low. In another way, the healthiness of an electrical insulator can be determined by the ratio of the resistive component to the capacitive component. For good insulator, this ratio would be quite low. This ratio is commonly known as tanδ or tan delta. Sometimes it is also referred to as dissipation factor.
tan delta test

In the vector diagram above, the system voltage is drawn along the x-axis. Conductive electric current i.e. resistive component of leakage current, IR will also be along x-axis.
As the capacitive component of leakage electric current IC leads system voltage by 90o, it will be drawn along y-axis.
Now, total leakage electric current IL(Ic + IR) makes an angle δ (say) with y-axis.
Now, from the diagram above, it is cleared, the ratio, IR to IC is nothing but tanδ or tan delta.

NB: This δ angle is known as loss angle.

Method of Tan Delta Testing

The cable, winding, current transformer, potential transformer, transformer bushing, on which tan delta test or dissipation factor test to be conducted, is first isolated from the system. A very low-frequency test voltage is applied across the equipment whose insulation to be tested.

First, the normal voltage is applied. If the value of tan delta appears good enough, the applied voltage is raised to 1.5 to 2 times of normal voltage, of the equipment. The tan delta controller unit takes measurement of tan delta values. A loss angle analyzer is connected with tan delta measuring unit to compare the tan delta values at normal voltage and higher voltages and analyze the results.

During the test, it is essential to apply test voltage at a very low frequency.

Reason of applying Very Low Frequency

If the frequency of the applied voltage is high, then capacitive reactance of the insulator becomes low, hence the capacitive component of electric current is high. The resistive component is nearly fixed; it depends upon applied voltage and conductivity of the insulator. At high frequency as capacitive current, is large, the amplitude of the vector sum of capacitive and resistive components of electric current becomes large too.

Therefore, required apparent power for tan delta test would become high enough which is not practical. So to keep the power requirement for this dissipation factor test, very low-frequency test voltage is required. The frequency range for tan delta test is generally from 0.1 to 0.01 Hz depending upon size and nature of insulation.

There is another reason for which it is essential to keep the input frequency of the test as low as possible.

As we know,

That means, dissipation factor tanδ ∝ 1/f.
Hence, at low frequency, the tan delta number is higher, and the measurement becomes easier.

How to Predict the Result of Tan Delta Testing

There are two ways to predict the condition of an insulation system during tan delta or dissipation factor test.

First, one is, comparing the results of previous tests to determine, the deterioration of the condition of insulation due to aging effect.

The second one is, determining the condition of insulation from the value of tanδ, directly. No requirement of comparing previous results of tan delta test.

If the insulation is perfect, the loss factor will be approximately the same for all range of test voltages. But if the insulation is not sufficient, the value of tan delta increases in the higher range of test voltage.
tan delta test graph
From the graph, it is clear that the tan and delta number nonlinearly increases with increasing test very low-frequency voltage. The increasing tan&delta, means, high resistive electric current component, in the insulation. These results can be compared with the results of previously tested insulators, to take the proper decision whether the equipment would be replaced or not.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.