Generator Excitation Protection

Encyclopedia
09/10/2024

Loss of Excitation Definition


Loss of excitation in a generator occurs when the excitation system fails, causing the generator to run above synchronous speed.


Induction Generator Mode


Without excitation, the generator becomes an induction generator, which can lead to overheating and overloading issues.


Undercurrent Relay Protection


An undercurrent relay can protect against loss of field by operating when the excitation current falls below a certain value.


This relay operates if the excitation current falls below a set value, typically 8% of the rated full load current. If the field circuit remains intact but the exciter fails, an induced current at slip frequency can cause the relay to pick up and drop off. This can be managed by adjusting the relay settings.


e5c0485cce518a4b5ad976d63f3154c2.jpeg


A setting of 5% of the normal full load current is recommended. The undercurrent relay has a normally closed contact that stays open while the relay coil is energised by the shunted excitation current. When the excitation system fails, the relay coil de-energises, closing the contact and supplying power to timing relay T1.


As the relay coil is energized, the normally open contact of this relay T1 is closed. This contact closes the supply across another timing relay T2 with an adjustable pickup time delay of 2 to 10 seconds. Relay T1 is time delayed on drop off to stabilize scheme again slip frequency effect. Relay T2 closes its contacts after the prescribed time delay to either shut down the set or initiate an alarm. It is time delayed on pickup to prevent spurious operation of the scheme during an external fault.


Timing Relays for Stability


Using timing relays helps stablise the protection scheme against slip frequency effects and prevent false operations.


We know that system voltage is the main indication of system stability. Therefore the offset mho relay is arranged to shut the machine down instantaneously when operation of generator is accompanied by a system voltage collapse. The drop in system voltage is detected by an under voltage relay which is set to approximately 70 % of normal rated system voltage. The offset mho relay is arranged to initiate load shedding to the system up to a safe value and then to initiate a master tripping relay after a predetermined time.


953b4266b512e85dead357fb6efabfe8.jpeg


Advanced Protection for Large Generators


For larger generators, advanced schemes with offset mho relays and under voltage relays are used to maintain system stability through load shedding and master tripping relays.

 

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
With the increasing complexity of power system operation environment and the deepening of power system reform, traditional power grids are accelerating the transformation to smart grids. The goal of equipment condition-based maintenance is achieved through real-time perception of equipment status by new sensors, reliable communication via modern network technology, and effective monitoring by background expert systems.I. Analysis of Condition-based Maintenance StrategyCondition-based Maintenance
Oliver Watts
06/11/2025
What is the current application status and development trend of medium-voltage switchgear?
What is the current application status and development trend of medium-voltage switchgear?
With the accelerated automation of power equipment, various medium-voltage switchgear have emerged in the market. Classified by insulation media, they are mainly divided into air-insulated, SF₆ gas-insulated and solid-insulated types, each with its own advantages and disadvantages: solid insulation offers good performance but poor environmental friendliness, SF₆ features excellent arc extinguishing capability but is a greenhouse gas, and air insulation has high cost-performance but larger volume
Echo
06/11/2025
What components make up the design of medium-voltage ring network distribution switchgear?
What components make up the design of medium-voltage ring network distribution switchgear?
As an expert who has been deeply engaged in the field of power system design for many years, I have always paid attention to the technological evolution and application practice of medium-voltage ring main distribution equipment. As a core electrical device in the secondary distribution link of the power system, the design and performance of such equipment are directly related to the safe and stable operation of the power supply network. The following is a professional analysis of the key design
Dyson
06/11/2025
What aspects should be paid attention to when installing medium-voltage switch cabinets during the initial stage of subway operation?
What aspects should be paid attention to when installing medium-voltage switch cabinets during the initial stage of subway operation?
1. Statistics on Common Faults of Medium-Voltage Switchgear in the Early Operation StageAs project participants, we found during the early operation of a new metro line: 21 sets of power supply equipment were put into use, with a total of 266 accident phenomena in the first year. Among them, 77 faults occurred in medium-voltage switchgear, accounting for 28.9%—significantly higher than faults in other equipment. Statistical analysis shows that major fault types include: protection device s
Felix Spark
06/11/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!