How does a change in primary resistance affect an ideal transformer?

11/27/2024

How Does the Change in Primary Resistance Affect an Ideal Transformer?

The change in primary resistance has significant implications for the performance of an ideal transformer, especially in practical applications. While an ideal transformer assumes no losses, real-world transformers have some resistance in both the primary and secondary windings, which can affect performance. Below is a detailed explanation of how changes in primary resistance impact an ideal transformer:

Assumptions of an Ideal Transformer

  • Zero Resistance: An ideal transformer assumes that the resistance of both the primary and secondary windings is zero.

  • No Core Losses: An ideal transformer assumes no hysteresis or eddy current losses in the core.

  • Perfect Coupling: An ideal transformer assumes perfect magnetic coupling between the primary and secondary windings, with no leakage flux.

Impact of Primary Resistance

Voltage Drop:

In a real transformer, the resistance Rp of the primary winding causes a voltage drop. As the load current increases, the primary current Ip also increases, and according to Ohm's law V=I⋅R, the voltage drop across the primary winding Vdrop =Ip ⋅Rp increases.

This voltage drop reduces the primary voltage Vp , which in turn affects the secondary voltage Vs . The secondary voltage is calculated using the formula:

d6f85d55e14e68796d868062ad8cff44.jpeg

where Ns and Np are the number of turns in the secondary and primary windings, respectively. If Vp decreases due to the resistance, Vs will also decrease.

Reduced Efficiency:

The presence of primary resistance leads to copper losses, which are resistive losses. Copper losses can be calculated using the formula Ploss=Ip2⋅Rp.

These losses increase the total losses in the transformer, reducing its efficiency. Efficiency η can be calculated using the formula:

3f6977efee9176e217e3bf669c9b8033.jpeg

where 

Pout is the output power and 

Pin is the input power.

Temperature Rise:

  • Copper losses cause the primary winding to heat up, leading to a temperature rise. This temperature rise can affect the insulation material, reducing the transformer's lifespan and reliability.

  • The temperature rise can also cause thermal stress on other components, such as the core and insulation materials, further impacting performance.

Load Characteristics:

  • Changes in primary resistance affect the load characteristics of the transformer. When the load changes, variations in primary current and voltage can cause changes in the secondary voltage, affecting the load's operating state.

  • For applications requiring a constant output voltage, changes in primary resistance can lead to unstable output voltage, impacting the proper operation of connected devices.

Conclusion

While an ideal transformer assumes zero resistance, in practical applications, changes in primary resistance significantly affect the performance of a transformer. Primary resistance can cause voltage drops, reduce efficiency, increase temperature, and alter load characteristics. Understanding these impacts is crucial for designing and using transformers effectively. Measures such as selecting low-resistance wire, implementing cooling solutions, and optimizing load management can help improve transformer performance and reliability.

Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.

Difference Between Short Circuit & Overload
Difference Between Short Circuit & Overload
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
08/28/2025
Difference Between Leading and Lagging Power Factor
Difference Between Leading and Lagging Power Factor
Leading and lagging power factors are two key concepts related to the power factor in AC electrical systems. The main difference lies in the phase relationship between current and voltage: in a leading power factor, the current leads the voltage, whereas in a lagging power factor, the current lags behind the voltage. This behavior depends on the nature of the load in the circuit.What is Power Factor?Power factor is a crucial, dimensionless parameter in AC electrical systems, applicable to both s
08/26/2025
Difference Between Electromagnet and Permanent Magnet
Difference Between Electromagnet and Permanent Magnet
Electromagnets vs. Permanent Magnets: Understanding the Key DifferencesElectromagnets and permanent magnets are the two primary types of materials that exhibit magnetic properties. While both generate magnetic fields, they differ fundamentally in how these fields are produced.An electromagnet generates a magnetic field only when an electric current flows through it. In contrast, a permanent magnet inherently produces its own persistent magnetic field once it has been magnetized, without requirin
08/26/2025
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
The power outage and work scopes must be clearly inspectedCollaborate with the site survey leader to confirm the equipment to be maintained and the work area involved. Consider requirements such as the use of special vehicles and large machinery, and safe distances from adjacent energized equipment. Verify on-site whether the proposed power outage scope is sufficient to meet the operational needs.On-site safety measures must be clearly inspectedCollaborate with the site survey leader to verify s
Vziman
08/14/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!