• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Free Expert Guides on Power Systems, Circuit Design & Electrical Troubleshooting

Access free engineering resources from IEE Business—covering power design, circuit layout, equipment selection, and troubleshooting. Expert-developed guides help engineers, procurement, and project teams make better decisions. Stay ahead on smart grids, renewables, efficiency, and AI tools. Improve reliability, reduce downtime, and enhance outcomes with real-world solutions. Explore our knowledge hub today.
Climate-Neutral 24kV Switchgear for Sustainable Grids | Nu1
Expected service life of 30–40 years, front access, compact design equivalent to SF6-GIS, no SF6 gas handling – climate-friendly, 100% dry air insulation. The Nu1 switchgear is metal-enclosed, gas-insulated, featuring a withdrawable circuit breaker design, and has been type-tested according to relevant standards, approved by the internationally recognized STL laboratory.Compliance Standards Switchgear: IEC 62271-1 High-voltage switchgear and controlgear – Part 1: Common specifications for altern
11/03/2025
Consult
Tip
Consult
Tip
Busbar-Side Grounding for 24kV Eco-Friendly RMUs: Why & How
Solid insulation assistance combined with dry air insulation is a development direction for 24 kV ring main units. By balancing insulation performance and compactness, the use of solid auxiliary insulation allows passing insulation tests without significantly increasing phase-to-phase or phase-to-ground dimensions. Encapsulation of the pole can address the insulation of the vacuum interrupter and its connected conductors.For the 24 kV outgoing busbar, with the phase spacing maintained at 110 mm,
11/03/2025
Consult
Tip
Consult
Tip
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
Ring main units (RMUs) are used in secondary power distribution, directly connecting to end-users such as residential communities, construction sites, commercial buildings, highways, etc.In a residential substation, the RMU introduces 12 kV medium voltage, which is then stepped down to 380 V low voltage through transformers. The low-voltage switchgear distributes electrical energy to various user units. For a 1250 kVA distribution transformer in a residential community, the medium-voltage ring m
11/03/2025
Consult
Tip
Consult
Tip
What Are the Handling Procedures After Transformer Gas (Buchholz) Protection Activation?
What Are the Handling Procedures After Transformer Gas (Buchholz) Protection Activation?When the transformer gas (Buchholz) protection device operates, a thorough inspection, careful analysis, and accurate judgment must be carried out immediately, followed by appropriate corrective actions.1. When the Gas Protection Alarm Signal is ActivatedUpon activation of the gas protection alarm, the transformer should be inspected immediately to determine the cause of operation. Check whether it was caused
11/01/2025
Consult
Tip
Consult
Tip
Grid Harmonics: Hidden Threat to Electrical Assets
When Actual Grid THD Exceeds Limits (e.g., Voltage THDv > 5%, Current THDi > 10%), It Causes Organic Damage to Equipment Across the Entire Power Chain — Transmission → Distribution → Generation → Control → Consumption. The Core Mechanisms Are Additional Losses, Resonant Overcurrent, Torque Fluctuations, and Sampling Distortion. Damage Mechanisms and Manifestations Vary Significantly by Equipment Type, as Detailed Below:1. Transmission Equipment: Overheating, Aging, and Drastically Reduced
11/01/2025
Consult
Tip
Consult
Tip
Harmonic THD Impact: From Grid to Equipment
The impact of harmonic THD errors on power systems must be analyzed from two aspects: "actual grid THD exceeding limits (excessive harmonic content)" and "THD measurement errors (inaccurate monitoring)" — the former directly damages system equipment and stability, while the latter leads to improper mitigation due to "false or missed alarms." When combined, these two factors amplify system risks. The impacts span the entire power chain — generation → transmission → distribution → consumption — af
11/01/2025
Consult
Tip
Consult
Tip
The Future of Intelligent Electrical Rooms: Innovation, Efficiency & Sustainability
What Is the Future of Intelligent Electrical Rooms?The Future of Intelligent Electrical RoomsIntelligent electrical rooms represent a significant upgrade from traditional setups by leveraging technologies such as the Internet of Things (IoT), big data analytics, and cloud computing. These advancements facilitate 24/7 remote monitoring, ensuring optimal safety, reliability, and operational efficiency.Key Trends in Intelligent Electrical Room Development Include: Integration and Innovation through
11/01/2025
Consult
Tip
Consult
Tip
How to Inspect an Electrical Room: Complete Checklist
Electrical Room Inspection: Content and PrecautionsThe electrical room is a critical facility for power equipment, responsible for power supply, distribution, and energy output. Therefore, regular inspection of the electrical room is an essential task.1. Electrical Room Inspection Content: Check the operation and lock of entry/exit doors, ensure door gaps are tight, and verify the floor is level and free of obstructions. Monitor the room’s temperature, humidity, and odor to ensure environmental
11/01/2025
Consult
Tip
Consult
Tip
SF6 Leak Detection Methods for GIS Equipment
For SF6 gas leakage rate detection in GIS equipment, when using the quantitative leak detection method, the initial SF6 gas content in the GIS equipment must be accurately measured. According to relevant standards, the measurement error should be controlled within ±0.5%. The leakage rate is calculated based on changes in gas content after a period of time, thereby evaluating the sealing performance of the equipment.In qualitative leak detection methods, direct visual inspection is commonly used,
10/31/2025
Consult
Tip
Consult
Tip
How SSTs Revolutionize Data Center Power at 800V DC
Optimized SEO-Friendly Abstract: NVIDIA’s 800V DC Architecture and the Rise of Solid-State Transformers in Next-Gen AI Data CentersOn October 16, 2025, NVIDIA published its landmark white paper, “800 VDC Architecture for Next-Generation AI Infrastructure,” signaling a pivotal shift in power delivery for AI-driven data centers. As large-scale AI models and next-gen CPUs/GPUs push computational demands to unprecedented levels, rack-level power consumption has surged from 10 kW in 2020 to 150 kW in
10/31/2025
Consult
Tip
Consult
Tip
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.