• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Intelligent Control Module Solution for AC Contactor Voltage Sag Ride-Through


1.Design Background and Requirement Analysis
During power system operation, voltage sags—characterized by a sudden drop in RMS voltage to 10%–90% of the rated value lasting from 10 ms to 1 minute—often occur due to lightning strikes, short-circuit faults, or the starting of large equipment. Such events can cause traditional AC contactors to trip, resulting in unplanned shutdowns in continuous production processes and significant economic losses.

Although several intelligent control solutions (e.g., high-voltage DC starting, PWM control) have been proposed, a key limitation remains: the failure to integrate automatic module fault transition functionality with voltage sag ride-through capability. To address this issue, this solution uses the CDC17-115 AC contactor as the control target and designs an intelligent control module with fault redundancy to maintain production continuity even in the event of module failure.

2. Module Working Principle and System Design
2.1 Overall Operational Logic Architecture
The intelligent control module adopts a dual-mode power supply design to ensure reliable operation under various conditions:

Operating State

Power Supply Method

Core Function

Trigger Condition

Normal Operation

DC Supply (via control module)

Silent DC operation, voltage sag ride-through

Fault protection circuit detects no abnormality

Module Fault

AC Supply (via contact switch)

Maintain production, issue alarm signal

Electronic circuit fault or coil DC under-voltage

Voltage Sag

Activate ride-through function

Maintain contactor pull-in state

Sampled voltage drops below 60% of rated value

Voltage Recovery

Deactivate ride-through function

Resume normal low-voltage holding

Voltage recovers within n ms (adjustable)

Voltage Not Recovered

Contactor breaks

Safe shutdown

Voltage sag exceeds n ms without recovery

2.2 Key Component Technical Details
2.2.1 Switching Power Supply Design
A high-performance switching power supply serves as the core power unit with the following features:

  • Core Architecture: Pulse-width modulation IC (switching frequency 132 kHz), MOSFET (MTD1N80E), special transformer (primary inductance 900 μH, leakage inductance 15 μH, turns ratio 0.11), and π-type output filter (L3, C2, C3)
  • Multi-Protection Functions: Input overvoltage/undervoltage, output overvoltage/overcurrent/short-circuit/overheat protection, integrated soft-start and frequency jitter technology
  • Performance:
    • Stable load start-up time < 35 ms, supports rapid switching between ride-through and normal states
    • Automatically limits power during short circuits and quickly stabilizes after fault clearance
    • Triggers overvoltage protection and immediately shuts off PWM output upon feedback loop open

Table 1: Impact of Filter Parasitic Parameters on Short-Circuit Recovery Voltage

Simulation Condition

R4/mΩ

R3/mΩ

R5/mΩ

Umax/V

Umin/V

Only varying filter capacitor parasitic resistance

10

100

300

14.78

7.41

Only varying filter capacitor parasitic resistance

10

20

70

8.89

4.79

Only varying filter inductor parasitic resistance

10

100

300

14.78

7.41

Only varying filter inductor parasitic resistance

800

100

300

6.11

6.06

2.2.2 Fault Transition Circuit Design
An innovative combination of contact and contactless switches is used:

  • Structural Design: Contact switches handle full breaking and isolation functions for high-power switching; power electronic switches enable arc-free, high-frequency operation
  • Intelligent Transition Logic:
    • AC power is supplied via normally closed contacts during initial power-up
    • Automatically switches to DC supply mode during normal operation
    • Upon fault detection, deactivates the contact switch drive; resumes AC direct supply after reset to ensure continuity
  • Contact Protection Technology: Uses a universal AC/DC absorption suppression circuit (diode RC + bidirectional TVS diode D3) to effectively clamp overvoltage, dissipate inductive magnetic energy, and significantly reduce arcing

2.2.3 Transition Process Optimization

  • AC-to-DC Transition: Applies full-wave rectified pulsating voltage via power electronic switches, delays 10 ms before switching to low-voltage DC, effectively preventing core rebound; tested transition is smooth and vibration-free
  • DC-to-AC Transition: Cuts off DC upon fault and intelligently introduces AC supply; arc energy is freewheeled through reverse diodes during transition, with phase-angle control to avoid voltage spike interference
  • Parameter Optimization (based on simulation results):
    • Resistors (R2, R3): Smaller resistance values result in slower voltage amplitude decay but do not affect transition phase angle
    • Capacitors (C1, C2): Smaller capacitance values yield higher oscillation decay frequency (f = 174.7 Hz at C = 2 μF; f = 795.4 Hz at C = 0.1 μF)

3. Simulation and Experimental Verification
3.1 Simulation Analysis
System simulations were conducted using Multisim software, including:

  • Switching power supply start-up characteristics and protection performance simulation
  • Analysis of resistance, capacitance, and phase angle effects on voltage oscillation during transition
  • Evaluation of parasitic parameter impacts on system stability

3.2 Experimental Verification
Tests on the CDC17-115 AC contactor confirmed:

  • Switching power supply no-load/full-load (50 A contactor) waveforms meet design expectations
  • Protection mechanisms respond quickly and effectively under short-circuit/feedback open-circuit faults
  • Transition processes are smooth, with no core vibration, and all functions meet design requirements

4. Core Advantages and Conclusion

  1. High-Performance Switching Power Supply: Compact size, high efficiency, and comprehensive protection functions significantly enhance electrical reliability, making it ideal for smart electrical applications.
  2. Intelligent Fault Transition: Innovative design combining contact and contactless switches ensures timely switching to AC operation during module faults, guaranteeing continuous power supply to the contactor system.
  3. Efficient Energy Management: Universal AC/DC absorption suppression circuit effectively converts overvoltage and arc energy during transitions into stable electromagnetic force, ensuring uninterrupted production.
  4. Voltage Sag Ride-Through Capability: Automatically activates when system voltage drops to 60% of the rated value, maintaining reliable contactor pull-in to avoid unplanned shutdowns.

This solution successfully integrates module fault transition with voltage sag ride-through functionality, providing a highly reliable power assurance solution for continuous production processes and effectively mitigating downtime caused by voltage sags.

09/18/2025
Recommended
Engineering
Integrated Wind-Solar Hybrid Power Solution for Remote Islands
Abstract​This proposal presents an innovative integrated energy solution that deeply combines wind power, photovoltaic power generation, pumped hydro storage, and seawater desalination technologies. It aims to systematically address the core challenges faced by remote islands, including difficult grid coverage, high costs of diesel power generation, limitations of traditional battery storage, and scarcity of freshwater resources. The solution achieves synergy and self-sufficiency in "power suppl
Engineering
An Intelligent Wind-Solar Hybrid System with Fuzzy-PID Control for Enhanced Battery Management and MPPT
Abstract​This proposal presents a wind-solar hybrid power generation system based on advanced control technology, aiming to efficiently and economically address the power needs of remote areas and special application scenarios. The core of the system lies in an intelligent control system centered around an ATmega16 microprocessor. This system performs Maximum Power Point Tracking (MPPT) for both wind and solar energy and employs an optimized algorithm combining PID and fuzzy control for precise
Engineering
Cost-Effective Wind-Solar Hybrid Solution: Buck-Boost Converter & Smart Charging Reduce System Cost
Abstract​This solution proposes an innovative high-efficiency wind-solar hybrid power generation system. Addressing core shortcomings in existing technologies—such as low energy utilization, short battery lifespan, and poor system stability—the system employs fully digitally controlled buck-boost DC/DC converters, interleaved parallel technology, and an intelligent three-stage charging algorithm. This enables Maximum Power Point Tracking (MPPT) over a wider range of wind speeds and s
Engineering
Hybrid Wind-Solar Power System Optimization: A Comprehensive Design Solution for Off-Grid Applications
Introduction and Background​​1.1 Challenges of Single-Source Power Generation Systems​Traditional standalone photovoltaic (PV) or wind power generation systems have inherent drawbacks. PV power generation is affected by diurnal cycles and weather conditions, while wind power generation relies on unstable wind resources, leading to significant fluctuations in power output. To ensure a continuous power supply, large-capacity battery banks are necessary for energy storage and balance. However, bat
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.