• 500 kV Dry-Type Shunt Reactor consist only of encapsulated windings
  • 500 kV Dry-Type Shunt Reactor consist only of encapsulated windings
500 kV Dry-Type Shunt Reactor consist only of encapsulated windings
discuss personally
Model
SR-500
Basic info
Brand Wone
Model NO. New 500 kV Shunt Reactor
Rated voltage 500KV
Series SR
Product Detail

Description:

Shunt reactors are connected in a parallel configuration to the power system to compensate for capacitive reactive power of transmission and distribution systems. This ensures that operating voltages are maintained within acceptable operating levels.

Shunt reactors are constructed as either “Oil-Immersed ” or “Dry-Type”.

Dry-Type reactors consist only of encapsulated windings, supported by the appropriate insulators.

Feature:

  • Special “Modular” Design which is more compact.

  •  Good voltage equalizing performance, excellecnt tolerance to transient overvoltage.

  •  No iron core, low vibration, low noise.

  •  Only 20% of the weight of oil reactor, less occupation of land, completely replace the oil reactor, maintenance-free.

  •  Low heat generation, rain proof, bird proof, good weather resistance and more reliable.

  •  Easy assembly and disassembly, fast and convenient transportation, great anti-seismic structure.

  •  Replaces Oil-Immersed shunt reactors and traditional Dry-Type Shunt Reactors.

Parameters:

image.png

How does a dry shunt reactor work?

Limiting Overvoltage:

  • In weak electrical systems, when the short-circuit power is relatively low, voltage increases due to capacitive generation. As the network's short-circuit power increases, the magnitude of voltage increase decreases, thereby reducing the need for compensation to limit overvoltage.

Limiting Reactive Power Transfer:

  • Reactors can achieve reactive power balance across different parts of the network. This is especially important in heavily loaded networks where new lines cannot be constructed due to environmental reasons. Reactors used for this purpose are mostly thyristor-controlled to rapidly adapt to the required reactive power. For instance, in industrial areas with arc furnaces, reactive power demand fluctuates between each half-cycle. Typically, a combination of Thyristor-Controlled Reactors (TCR) and Thyristor-Switched Capacitor banks (TSC) is used to absorb and generate reactive power based on instantaneous demand.

Extinguishing Secondary Arcs:

  • During single-phase reclosing in long transmission lines, interphase capacitive coupling can provide a current that sustains the arc, known as the secondary arc. By adding a single-phase reactor at the neutral point, the secondary arc can be extinguished, improving the success rate of single-phase automatic reclosing.


Know your supplier
Wone
Main Categories
High voltage/Low voltage/Wire cable/Instrument meters/New energy/Tester/Production equipment/Generator/Electrical fittings/Integrated Electrical Equipment
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$50,000,000
Professional Experience
1 years
Workplace
65666m²m²
占位
占位
Related Products
Related Knowledges
How to Design and Install a Solar PV System?
How to Design and Install a Solar PV System?
Design and Installation of Solar PV SystemsModern society relies on energy for daily needs like industry, heating, transport, and agriculture, mostly met by non-renewable sources (coal, oil, gas). However, these cause environmental harm, are unevenly distributed, and face price volatility due to limited reserves—driving demand for renewable energy.Solar energy, abundant and capable of meeting global needs, stands out. Standalone PV systems (Fig 1) offer energy independence from utilities.
Edwiin
07/17/2025
What are the common faults that occur when low-voltage current transformers are combined with other power equipment?
What are the common faults that occur when low-voltage current transformers are combined with other power equipment?
Low-voltage current transformers, as indispensable measurement and protection devices in power systems, often encounter various faults when used in combination with other power equipment due to environmental factors, equipment linkage issues, and improper installation and maintenance. These faults not only affect the normal operation of power equipment but may also endanger personal safety. Therefore, it is necessary to gain an in-depth understanding of fault types, judgment methods, and prevent
Felix Spark
07/17/2025
What are the monitoring methods and future development trends of low-voltage voltage transformers?
What are the monitoring methods and future development trends of low-voltage voltage transformers?
With the continuous advancement of smart grid technology, intelligent monitoring systems are playing an increasingly important role in preventing and addressing faults in voltage transformers. These modern intelligent monitoring systems can collect key parameters from voltage transformers in real time—such as partial discharge levels, temperature, and oil quality—and use data analysis algorithms to assess the health status of the equipment, enabling early fault warnings and precise l
Echo
07/16/2025
What are the common faults of low-voltage voltage transformers?
What are the common faults of low-voltage voltage transformers?
1. Open - Circuit Fault on the Secondary SideOpen - circuit in the secondary side is a typical fault of low - voltage voltage transformers, showing abnormal voltmeter readings (zero/fluctuation), faulty power meters, buzzing noises, and core overheating. When open - circuited, the secondary voltage spikes (no secondary current to balance the primary EMF), causing core saturation, flux distortion, and potential overheating/damage.Causes include loose terminals, poor contact, or human error. In lo
Oliver Watts
07/16/2025
A Quick Verification Method for Low-Voltage Current Transformers
A Quick Verification Method for Low-Voltage Current Transformers
1. Selection of Low - Voltage Current Transformer ConfigurationThere are many factors leading to wrong selection of low - voltage current transformers in civil construction projects. For example, common factors include design problems: the calculated coefficient designed for the load of electrical equipment is relatively large, or the transformation ratio of the current transformer is selected incorrectly. Such a series of reasons will affect the use of electrical equipment. Therefore, in the co
James
07/16/2025
A Quick Verification Method for Low-Voltage Current Transformers
A Quick Verification Method for Low-Voltage Current Transformers
To ensure safe operation of the power system, power equipment operation must be monitored/measured. General devices can’t connect to primary high - voltage equipment directly; instead, large primary currents are scaled down for current transformation, electrical isolation, and use by measurement/protection devices. For AC large - current measurement, conversion to a unified current eases secondary instrument use.Current transformers split into measurement - and protection - type, with accu
Oliver Watts
07/16/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!