• 40.5kV 72.5kV 145kV 170kV 245kV Dead tank Vacuum Circuit-Breaker
40.5kV 72.5kV 145kV 170kV 245kV Dead tank Vacuum Circuit-Breaker
discuss personally
Model
ZW32-245kV
ZW32-170kV
ZW32-145kV
ZW32-72.5kV
ZW32-40.5kV
Basic info
Brand ROCKWILL
Model NO. 40.5kV 72.5kV 145kV 170kV 245kV Dead tank Vacuum Circuit-Breaker
Rated voltage 245kV
Rated frequency 50/60Hz
Series ZW
Product Detail

Description :

The 40.5kV, 72.5kV, 145kV, 170kV, and 245kV Dead tank Vacuum Circuit-Breakers are essential protective devices for high-voltage power systems. Employing vacuum as the arc-extinguishing and insulating medium, they boast exceptional arc-quenching capabilities, swiftly interrupting fault currents and effectively preventing arc re-ignition to ensure stable power system operation. The dead tank design offers a compact footprint and robust mechanical stability, facilitating installation and maintenance. Equipped with highly reliable spring operating mechanisms, these circuit breakers have a mechanical lifespan exceeding 10,000 operations, delivering rapid and precise responses. With outstanding environmental adaptability, they can operate stably under harsh outdoor conditions. Widely applied in substations, transmission lines, and other scenarios, they provide efficient and secure power switching control and reliable protection across various voltage levels.
 
Main function introduction:
 
  • Efficient Arc Extinction: Utilizes vacuum for rapid and reliable arc quenching, preventing re - ignition.
  • Wide Voltage Range: Available in 40.5kV, 72.5kV, 145kV, 170kV, and 245kV ratings for versatile grid applications.
  • Robust Dead Tank Design: Compact structure ensures mechanical stability and simplifies installation/maintenance.
  • Reliable Operation: Spring - based operating mechanism with over 10,000 mechanical endurance cycles.
  • Enhanced Sealing: Dual - seal flange design offers waterproof and gas - tight protection, ideal for outdoor use.
Technology parameters:
Device structure:
ZW-40.5
image.png
ZW-72.5
image.png
ZW-145
image.png
ZW-170
image.png
 
 
Know your supplier
ROCKWILL
Rockwill Electric Group Global Manufacturer of High voltage and medium-voltage power equipment and smart grid solutions. Headquartered in Wenzhou, China. Serving 100+ countries with quality, innovation, and trust. What We Offer: • HV-MV switchgear (VCB, SF₆ circuit breakers, RMU, GIS) • Distribution transformers and substations • Smart grid and monitoring systems • Solar, wind, EV charging, and energy storage solutions • EPC turnkey power projects Certified: ISO 9001 / ISO 14001 / ISO 45001
Main Categories
High Voltage Electrical Apparatus
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150,000,000
Professional Experience
16 years
Workplace
108000m²m²
占位
占位
Related Products
Related Knowledges
What is the difference between a dielectric and an insulator?
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
Edwiin
08/30/2025
Fault Analysis and Treatment of Oil-Immersed Transformers
Fault Analysis and Treatment of Oil-Immersed Transformers
Oil Leakage at Welded JointsOil leakage at welded joints primarily stems from poor welding quality, such as incomplete or detached welds, and defects like pinholes and gas pores. Although oil-immersed transformers are initially coated with solder and paint during manufacturing, potentially masking these issues temporarily, the defects tend to surface during operation. Additionally, electromagnetic vibration can cause weld cracks, leading to oil leakage.To resolve such leaks, the first critical s
Edwiin
08/29/2025
What losses occur during operation of the transformer? How to reduce losses?
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Cable Fault Detection, Testing, Location and Repair
Cable Fault Detection, Testing, Location and Repair
I. Methods for Cable Testing and Inspection:Insulation Resistance Test: Use an insulation resistance tester to measure the insulation resistance value of the cable. A high insulation resistance value indicates good insulation, while a low value may suggest insulation problems requiring further investigation.Voltage Withstand Test: Apply a high-voltage test using a high-voltage tester to verify whether the cable can withstand high voltage under its rated operating conditions. Under normal circums
Leon
08/29/2025
Cable Quality Inspection and Cable Detection & Testing
Cable Quality Inspection and Cable Detection & Testing
Power cable quality inspection and cable testing are conducted to ensure that the cable's quality and performance meet specified requirements, thereby guaranteeing the safe and stable operation of power systems. Below are some common contents of power cable quality inspection and cable testing:Visual Inspection: Check the cable surface for physical defects such as damage, deformation, or scratches to ensure the cable's exterior is intact.Dimensional Measurement: Measure dimensional parameters su
Edwiin
08/29/2025
Transformer Detection, Testing, Maintenance and Servicing
Transformer Detection, Testing, Maintenance and Servicing
Transformer testing, inspection, and maintenance are essential tasks to ensure normal operation and extend the service life of transformers. Below are some recommended steps:Visual Inspection: Regularly inspect the transformer's exterior, including the enclosure, cooling system, and oil tank. Ensure the enclosure is intact, free from corrosion, damage, or leakage.Insulation Resistance Testing: Use an insulation resistance tester to check the transformer's insulation system. Verify that the insul
Vziman
08/29/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!