• 100kVA Step Down All Copper 3 Phase Dry Type Distribution Transformer
  • 100kVA Step Down All Copper 3 Phase Dry Type Distribution Transformer
  • 100kVA Step Down All Copper 3 Phase Dry Type Distribution Transformer
100kVA Step Down All Copper 3 Phase Dry Type Distribution Transformer
discuss personally
Model
SC(B)-20KV-100KVA
SC(B)-35KV-100KVA
SC(B)-10KV-100KVA
Basic info
Brand Vziman
Model NO. 100KVA Step Down All Copper 3 Phase Dry Type Distribution Transformer
Rated capacity 100kVA
Voltage grade 20KV
Series SC(B)
Product Detail

Feature:

  • The magnetic core has a miter step joint to ensure optimum performance and minimum sound levels by using step lap technology.

  • Windings are cast under vacuum with epoxy resin. Transient analysis tests have been performed to verify the electrical stress distribution.

  • Air-cooling system adopts top-blowing cross flow fan, which has the characteristics of low noise, high wind pressure, beautiful look, etc.

  • Intelligent temperature controller improves the safety and reliability of the transformer.

  • Supply various Enclosure options in IP20, IP23, etc.

Parameter:

image.png

Installation Location:


  • Installed in places without fire, explosion hazard, serious pollution, chemical corrosion and cluster vibration, indoor or outdoor.

  • Supply Ability:500 Set/Sets per Month.

Customized Service:

  • E2 Environmental Class.

  • C2 Climate Class.

  • F1 Fire Resistance Class.


Product Advantages:

  •  Vacuum-Casting

  • Our product is manufactured with vacuum casting process using a metal pattern, producing a thick resin layer with a smooth surface.

  •  Partial Discharge Free

  • Lower partial discharge characteristics.

  • All units are subjected to partial discharge test.

  • Voltage that is twice that of the operating system is applied to ensure safety.

  • Partial discharge is less than 10 pC.

  •  Shop Test Items.

Routine test:

  • Routine test is a must test for all transformers in our workshop.

  • Type test (as requested).

  • Lightning impulse test.

  • Temperature-rise test.

  • Measurement of sound level.


What is a step-down all-copper three-phase dry-type distribution transformer?

Definitions and Characteristics:

  • Voltage Reduction: It means that a transformer converts the input high-voltage electrical energy into low-voltage electrical energy.

  • All-Copper: The windings of the transformer are all made of copper wires, which possess excellent electrical conductivity and mechanical strength.

  • Three-Phase: It indicates that the transformer has three independent windings and is applicable to three-phase alternating current systems.

  • Dry-Type: It means that the transformer does not use a liquid cooling medium (such as transformer oil), and usually adopts natural air cooling or forced air cooling.

Working Principle:

  • Input Voltage: The high-voltage power source is applied to the transformer through the primary winding.

  • Generating Magnetic Field: The current in the primary winding generates an alternating magnetic field in the iron core.

  • Transferring Magnetic Field: The alternating magnetic field is transferred to the secondary winding through the iron core.

  • Inducing Electromotive Force: The alternating magnetic field induces an electromotive force in the secondary winding, generating a low-voltage output voltage.

  • Output Voltage: The secondary winding outputs the required low-voltage electrical energy for the load to use.

Know your supplier
Vziman
Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.
Main Categories
High Voltage Electrical Apparatus
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150000000
Professional Experience
3 years
Workplace
10000m²
占位
占位
Related Products
Related Knowledges
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
I. Introduction to Cable Grounding Loop CurrentCables rated 110 kV and above use a single-core structure. The alternating magnetic field generated by the operating current induces a voltage on the metallic sheath. If the sheath forms a closed circuit through the earth, a grounding loop current will flow on the metallic sheath. Excessive grounding loop current (loop current exceeding 50 A, more than 20% of the load current, or a ratio of maximum-to-minimum phase current greater than 3) not only a
Felix Spark
09/03/2025
Considerations and Recommendations for Flame-Retardant Selection of High-Voltage Cables
Considerations and Recommendations for Flame-Retardant Selection of High-Voltage Cables
1.Flame-Retardant Cable Classification StandardsThe flame-retardant standard system is divided into two main categories. The first category follows the "Classification of Burning Behavior for Electric and Optical Fiber Cables" GB 31247. Cables complying with this standard system are widely used in densely populated areas such as high-speed railways and subways. This standard imposes strict requirements on parameters such as smoke density, heat release, and total smoke production, and cables typi
James
09/03/2025
Repair of high-voltage cable metallic sheaths
Repair of high-voltage cable metallic sheaths
I. Functions of Metallic Sheaths and Necessity of RepairThe metallic sheath of high-voltage cables is a metal shielding structure laid outside the insulation layer, including types such as lead sheaths, aluminum sheaths, and steel wire armor. Its core functions include mechanical protection (resisting external impact and compression), electrochemical corrosion protection (isolating moisture and soil pollutants), electromagnetic shielding (reducing electromagnetic interference to the environment)
Felix Spark
09/03/2025
What factors need to be considered when designing a transformer?
What factors need to be considered when designing a transformer?
Transformer design is a complex process that requires consideration of multiple factors to ensure safe and efficient operation. In addition, compliance with international and local regulations is essential to guarantee that transformers meet safety and performance standards. Below are key factors to consider in transformer design and the relevant regulations to follow:Transformer Design Factors: Voltage and Frequency: Determine the input and output voltage levels and the operating frequency. The
Vziman
09/02/2025
What failure modes are possible in a transformer? How to identify and fix these failures?
What failure modes are possible in a transformer? How to identify and fix these failures?
Transformers are critical components in power systems, and various failure modes can affect their operation. Timely identification and resolution of these failure modes are essential to prevent costly downtime and ensure system reliability. Below are some common transformer failure modes, along with methods to identify and address them: Insulation FailureIdentification: Insulation failure leads to decreased insulation resistance, which can be detected through insulation resistance testing (megge
Edwiin
09/02/2025
A hybrid DC circuit breaker
A hybrid DC circuit breaker
Most DC molded-case circuit breakers use natural air arc extinction, and there are typically two arc extinguishing methods: one is conventional opening and closing, where the contacts axially stretch the arc, while the conductive circuit generates a magnetic field that bends and elongates the arc, pulling it lengthwise perpendicular to the arc axis. This not only increases the arc length but also induces lateral motion, enabling air cooling to achieve arc extinction.The other method involves the
Echo
09/02/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!