• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


A Two-Stage DC-DC Isolated Converter for Battery-Charging Applications

IEEE Xplore
IEEE Xplore
Field: Electrical Standards
0
Canada

     This paper proposes and analyzes a two-stage dc-dc isolated converter for electric vehicle charging applications, where high efficiency over a wide range of battery voltages is required. The proposed conversion circuit comprises a first two-output isolation stage with CLLC resonant structure and a second two-input buck regulator. The transformer of the first stage is designed such that its two output voltages correspond, ideally, to the minimum and maximum expected voltage to be supplied to the battery. Then, the second stage combines the voltages provided by the previous isolation stage to regulate the output voltage of the whole converter. The first stage is always operated at resonance, with the only function of providing isolation and fixed conversion ratios with minimum losses, whereas the second stage allows output voltage regulation over a wide range of battery voltages. Overall, it is shown that the solution features high conversion efficiency over a wide range of output voltages.

1.Introduction.

    Electric transportation is gaining ground in many countries due to growing concerns about global greenhouse gas emissions and fossil fuel supply and depletion. These concerns have lately propelled the exponential growth of the demand for electric vehicles (EVs) . Such a high demand combined with the strive for longer ranges and reduced charging time is pushing newer generations of EVs that implement higher battery capacities and charging rates. Consequently, new EV charging stations are needed to supply more power, more quickly than ever before.

A Two .png


2.Structure and Operating Principle.

    As shown in Fig.  the proposed two-stage converter consists of a first isolation stage based on an LLC resonant converter, and a second post-regulator stage based on a buck converter.   Such a post-regulator is responsible of the output voltage regulation and it is supplied by means of a high-efficiency two-output DCX converter, with secondary voltages V1 and V2.   From Fig., it is clear that the voltage stress of the post-regulator, namely, V1−V2, is lower that the output voltage Vo, which consequently allows switching devices with smaller on-resistance as well as lower switching losses.

Converter Parameters.png


3.Design of Llc Stage Operated As Dcx.

     When the LLC resonant tank is operated at the resonance frequency, the voltage conversion ratio becomes ideally independent from the actual load. In other words, the LLC converter maintains a constant voltage conversion ratio and adjusts its current automatically, according to the load conditions, behaving as a DCX. In this operating condition, the LLC shows its maximum efficiency, with a minimum flow of reactive power and zero-voltage switching (ZVS) and zero-current switching (ZCS) conditions always satisfied . Notably, the DCX operation of the LLC does not require an external resonant inductor, because the conversion gain is fixed. An equivalent solution based on a resonant FB-LLC designed to operate over the same wide range of output voltages is expected to show higher losses than the LLC in permanent DCX conditions.

DCX.png

4.Conclusion

     Conversion performances covering the whole power and voltage ranges have been reported experimentally, showing high efficiency over a wide range of operating conditions, recording a peak efficiency of 98.63% at 500V output voltage and 7kW transferred power.   In final applications, series or parallel connections of multiple modules can be considered for scaling the voltage or current ratings of the final implementation, thanks to the isolated output.   Future studies may include on-line controllers for optimal converter modulation and procedures for the optimal design of the components of the converter, like the output TBB inductors.

DCX-CLLC + twin-bus buck converter prototype..png

Source: IEEE Xplore

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete

Give a tip and encourage the author!
Recommended
A Guide to the Latest Transformer Testing Technologies
A Guide to the Latest Transformer Testing Technologies
Transformers come in many types, primarily oil-immersed and dry-type. Their fault manifestations are diverse, but most failures are concentrated in the windings, core, connecting components, and oil contamination. For example, winding insulation damage, open circuits, short circuits, and inter-turn short circuits at connection points. Common external symptoms of transformer faults include severe overheating, excessive temperature rise, abnormal noise, and three-phase imbalance.Routine transforme
Oliver Watts
10/20/2025
Inspection of transformers can be performed without any detection tools.
Inspection of transformers can be performed without any detection tools.
Transformers are electrical devices that change voltage and current based on the principle of electromagnetic induction. In power transmission and distribution systems, transformers are essential for stepping up or stepping down voltages to reduce energy losses during transmission. For example, industrial facilities typically receive power at 10 kV, which is then stepped down to low voltage via transformers for on-site use. Today, let’s learn about several common transformer inspection methods.1
Oliver Watts
10/20/2025
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic (PV) Power Generation SystemsA photovoltaic (PV) power generation system is primarily composed of PV modules, a controller, an inverter, batteries, and other accessories (batteries are not required for grid-connected systems). Based on whether it relies on the public power grid, PV systems are divided into off-grid and grid-connected types. Off-grid systems operate independently without relying on the utility grid. They are equipped with energy-s
Encyclopedia
10/09/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
1. On a scorching sunny day, do damaged vulnerable components need to be replaced immediately?Immediate replacement is not recommended. If replacement is necessary, it is advisable to do so in the early morning or late afternoon. You should contact the power station’s operation and maintenance (O&M) personnel promptly, and have professional staff go to the site for replacement.2. To prevent photovoltaic (PV) modules from being hit by heavy objects, can wire mesh protective screens be install
Encyclopedia
09/06/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.