• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Shunt Capacitor: What is it? (Compensation & Diagram)

Electrical4u
Field: Basic Electrical
0
China

What Is A Shunt Capacitor

What is a Shunt Capacitor?

A capacitor bank is very essential equipment of an electrical power system. The power required to run all the electrical appliances is the load as useful power is active power. The active power is expressed in kW or MW. The maximum load connected to the electrical power system is mainly inductive in nature such as electrical transformer, induction motors, synchronous motor, electric furnaces, fluorescent lighting are all inductive in nature.

In addition to these, inductance of different lines also contributes inductance to the system.
Because of these inductances, the system
current lags behind system voltage. As the lagging angle between voltage and current increases, the power factor of the system decreases. As the electrical power factor decreases, for same active power demand the system draws more current from source. More current causes, more line losses.

Poor electrical power factor causes poor voltage regulation. So to avoid these difficulties, the electrical power factor of the system to be improved. As a capacitor causes current to lead the voltage, capacitive reactance can be used to cancel the inductive reactance of the system.
The capacitor reactance can be used to cancel the inductive reactance of the system.

The capacitor reactance is generally applied to the system by using static capacitor in shut or series with system. Instead of using a single unit of capacitor per phase of the system, it is quite effective to use a bank of capacitor units, in the view of maintenance and erection. This group or bank of capacitor units is known as capacitor bank.

There are mainly two categories of capacitor bank according to their connection arrangements.

  1. Shunt capacitor.

  2. Series capacitor.

The Shunt capacitor is very commonly used.

How to determine Rating of Required Capacitor Bank

The size of the Capacitor bank can be determined by the following formula :

Where,
Q is required KVAR.
P is active power in KW.
cosθ is
power factor before compensation.
cosθ’ power factor after compensation.

Location of Capacitor Bank

Theoretically it is always desired to commission a capacitor bank nearer to reactive load. This makes transmission of reactive KVARS is removed from a greater part of the network. Moreover if capacitor and load are connected simultaneously, during disconnection of load, capacitor is also disconnected from rest of the circuit. Hence, there is no question of over compensation. But connecting capacitor with each individual load is not practical in the economical point of view. As the size of loads extremely differs for different consumers. So various size of capacitors are not always readily available. Hence proper compensation can not be possible at each loading point. Again each load is not connected with system for 24 × 7 hours. So the capacitor connected to the load also can not be fully utilized.

Hence, capacitor, is not installed at small load but for medium and large loads, capacitor bank can be installed at consumer own premises. Although the inductive loads of medium and large bulk consumers are compensated, but still there would be considerable amount of VAR demand originated from different uncompensated small loads connected to the system. In addition to that, inductance of line and transformer also contribute VAR to the system. On viewing of these difficulties, instead of connecting capacitor to each load, large capacitor bank is installed at main distribution sub-station or secondary grid sub-station.

Connection of Shunt Capacitor Bank

The capacitor bank can be connected to the system either in delta or in star. In star connection, the neutral point may be grounded or not depending upon protection scheme for capacitor bank adopted. In some cases the capacitor bank is formed by double star formation.

Generally large capacitor bank in electrical substation is connected in star.
The grounded star connected bank has some specific advantages, such as,

  1. Reduced recovery voltage on circuit breaker for normal repetitive capacitor switching delay.

  2. Better surge protection.

  3. Comparatively reduced over voltage phenomenon.

  4. Lesser cost of installation.

  5. In a solidly grounded system the voltage of all 3-phases of a capacitor bank, are fixed and remain unchanged even during 2 phase operation period.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
Ensuring Reliability: A Deep Dive into Transformer Maintenance
IntroductionElectric transformers are the backbone of modern power distribution systems, silently enabling the reliable delivery of electricity to homes, businesses, and industries. As these critical assets age and the demand for uninterrupted power grows, the importance of diligent transformer maintenance has never been greater. This essay explores the essential role of transformer maintenance, highlighting the value of proactive care, the impact of advanced diagnostic technologies, and the tra
Vziman
09/03/2025
How does a transformer work?
Transformer Operation PrincipleA transformer is an electrical device that operates on the principle of electromagnetic induction to transfer electrical energy from one circuit to another. It enables the adjustment of voltage levels within an alternating current (AC) system, either stepping up (increasing) or stepping down (decreasing) voltage while maintaining the same frequency.Working Principle:Basic ComponentsA transformer consists of two coils, known as windings—the "primary winding" connect
Rockwell
09/03/2025
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
Edwiin
08/30/2025
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.