• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Backup Protection of Transformer | Over Current and Earth Fault

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

Backup Protection Of Transformers

Over Current and Earth Fault Protection of Transformer

Backup protection of electrical transformer is simple Over Current and Earth Fault protection are applied against external short circuit and excessive over loads. These over current and earth Fault relays may be of Inverse Definite Minimum Time (IDMT) or Definite Time type relays (DMT). Generally IDMT relays are connected to the in-feed side of the transformer.
The over current relays can not distinguish between external short circuit, over load and
internal faults of the transformer. For any of the above fault, backup protection i.e. over current and earth fault protection connected to in-feed side of the transformer will operate.

Backup protection is although generally installed at in feed side of the transformer, but it should trip both the primary and secondary circuit breakers of the transformer.
backup over current earth fault protection of power transformerOver Current and Earth Fault protection relays may be also provided in load side of the transformer too, but it should not inter trip the primary side circuit breaker like the case of backup protection at in-feed side.

The operation is governed primarily by current and time settings and the characteristic curve of the relay. To permit use of over load capacity of the transformer and co-ordination with other similar relays at about 125 to 150% of full load current of the transformer but below the minimum short circuit current.
Backup
protection of transformer has four elements; three over current relays connected each in each phase and one earth fault relay connected to the common point of three over current relays as shown in the figure. The normal range of current settings available on IDMT over current relays are 50% to 200% and on earth fault relay 20 to 80%.

over current and earth fault protection of power transformer

Another range of setting on earth fault relay is also available and may be selected where the earth fault current is restricted due to insertion of impedance in the neutral grounding. In the case of transformer winding with neutral earthed, unrestricted earth fault protection is obtained by connecting an ordinary earth fault relay across a neutral current transformer.
The unrestricted over current and earth fault relays should have proper time lag to co-ordinate with the protective relays of other circuit to avoid indiscriminate tripping.
unrestricted earth fault protection using Neutral CT

If you’d like to learn more about transformers, you can study our free MCQs on transformers.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
PT Fuse Slow Blow: Causes, Detection & Prevention
PT Fuse Slow Blow: Causes, Detection & Prevention
I. Fuse Structure and Root Cause AnalysisSlow Fuse Blowing:From the design principle of fuses, when a large fault current passes through the fuse element, due to the metal effect (certain refractory metals become fusible under specific alloy conditions), the fuse first melts at the soldered tin ball. The arc then rapidly vaporizes the entire fuse element. The resulting arc is quickly extinguished by quartz sand.However, due to harsh operating environments, the fuse element may age under the comb
Edwiin
10/24/2025
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Common Causes of Fuse BlowingCommon reasons for fuse blowing include voltage fluctuations, short circuits, lightning strikes during storms, and current overloads. These conditions can easily cause the fuse element to melt.A fuse is an electrical device that interrupts the circuit by melting its fusible element due to heat generated when current exceeds a specified value. It operates on the principle that, after an overcurrent persists for a certain period, the heat produced by the current melts
Echo
10/24/2025
Fuse Maintenance & Replacement: Safety and Best Practices
Fuse Maintenance & Replacement: Safety and Best Practices
1. Fuse MaintenanceFuses in service should be regularly inspected. The inspection includes the following items: Load current should be compatible with the rated current of the fuse element. For fuses equipped with a fuse blown indicator, check whether the indicator has actuated. Check the conductors, connection points, and the fuse itself for overheating; ensure connections are tight and making good contact. Inspect the fuse exterior for cracks, contamination, or signs of arcing/discharge. Liste
James
10/24/2025
Maintenance and Repair Items for 10kV High-Voltage Switchgear
Maintenance and Repair Items for 10kV High-Voltage Switchgear
I. Routine Maintenance and Inspection(1) Visual Inspection of Switchgear Enclosure No deformation or physical damage to the enclosure. Protective paint coating shows no severe rust, peeling, or flaking. Cabinet is securely installed, clean on the surface, and free of foreign objects. Nameplates and identification labels are neatly affixed and not falling off.(2) Check of Switchgear Operating Parameters Instruments and meters indicate normal values (comparable to typical operating data, with no s
Edwiin
10/24/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.