• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What Is Insulator Pollution Flashover Its Hazards Types and Prevention Methods?

Leon
Field: Fault Diagnosis
China

Insulator Pollution Flashover and Its Hazards

Pollution flashover refers to a phenomenon where contaminants on the surface of electrical equipment insulators (external insulation) dissolve in moisture, forming a conductive layer that significantly reduces the insulator's insulation level. Under the influence of an electric field, this leads to severe discharge. During pollution flashover incidents, the success rate of automatic reclosing is very low, often resulting in widespread power outages. The intense arcs accompanying pollution flashovers frequently cause damage to electrical equipment.

Types of Insulator Pollution

  • Industrial Pollution: This type of pollution originates from industrial production processes, including gaseous, liquid, and solid pollutants emitted from chimneys. It is predominantly found in industrial cities, their suburbs, and areas with concentrated industries, such as chemical plants, smelters, thermal power plants, cement factories, coal mines, and cooling towers or water spray pools.

  • Natural Pollution: Naturally occurring pollution includes dust, saline-alkali contamination, sea salt or seawater, bird droppings, and ice or snow accumulation.

  • Ice and Snow Accumulation: A special form of pollution, ice or snow covering insulators can increase their surface conductivity when melting, leading to flashover accidents under operational voltage, known as ice flash, which is a variant of pollution flashover.

Prevention and Control of Insulator Pollution Flashover

Voltage, pollution, and moisture are the three essential conditions for pollution flashover. Preventative measures target these aspects, such as increasing creepage distance, reducing surface contamination, creating dry zones on surfaces, and using new types of insulators to disrupt the formation of flashover conditions and prevent accidents.

Power operation departments summarize enhanced insulation measures in polluted areas into three categories: increasing creepage distance ("climbing"), cleaning, and coating.

  • Adjusting Creepage Distance ("Climbing"): Based on specified creepage ratios in pollution zone maps, adjusting the external insulation creepage distance of electrical equipment in that area is called adjusting creepage distance, or "climbing". Methods include adding more insulator discs, replacing with longer creepage distance insulators, or using composite insulators.

  • Cleaning: A relatively simple method among anti-pollution technical measures involves removing accumulated contaminants from the insulator surface to restore its original insulation level. Cleaning can be done while energized or de-energized, with energized cleaning methods including water flushing, air blowing, and electric brushes.

  • Surface Treatment: Porcelain and glass insulator surfaces exhibit hydrophilic properties, making it easy for continuous water films to form under humid conditions, facilitating contamination wetting and leakage current paths. Surface treatment involves applying special coatings to insulator surfaces to enhance hydrophobicity, preventing the formation of leakage current paths during electrification.

Give a tip and encourage the author!

Recommended

HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Design Principles for Pole-Mounted Distribution Transformers
Design Principles for Pole-Mounted Distribution Transformers(1) Location and Layout PrinciplesPole-mounted transformer platforms should be located near the load center or close to critical loads, following the principle of “small capacity, multiple locations” to facilitate equipment replacement and maintenance. For residential power supply, three-phase transformers may be installed nearby based on current demand and future growth projections.(2) Capacity Selection for Three-Phase Pole-Mounted Tr
12/25/2025
Transformer Noise Control Solutions for Different Installations
1.Noise Mitigation for Ground-Level Independent Transformer RoomsMitigation Strategy:First, conduct a power-off inspection and maintenance of the transformer, including replacing aged insulating oil, checking and tightening all fasteners, and cleaning dust from the unit.Second, reinforce the transformer foundation or install vibration isolation devices—such as rubber pads or spring isolators—selected based on the severity of vibration.Finally, strengthen sound insulation at weak points of the ro
12/25/2025
Rockwill Passes Single-Phase Ground Fault Test for Smart Feeder Terminal
Rockwill Electric Co., Ltd. has successfully passed the real-scenario single-phase-to-ground fault test conducted by the Wenzhou of China Electric Power Research Institute for its DA-F200-302 hood-type feeder terminal and integrated primary-secondary pole-mounted circuit breakers—ZW20-12/T630-20 and ZW68-12/T630-20—receiving an official qualified test report. This achievement marks Rockwill Electric as a leader in single-phase ground fault detection technology within distribution networks.The DA
12/25/2025
Related Products
Send inquiry
+86
Click to upload file

IEE Business will not sell or share your personal information.

Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.