• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


How does a transformer work?

Rockwell
Field: Manufacturing
China

Transformer Operation Principle

A transformer is an electrical device that operates on the principle of electromagnetic induction to transfer electrical energy from one circuit to another. It enables the adjustment of voltage levels within an alternating current (AC) system, either stepping up (increasing) or stepping down (decreasing) voltage while maintaining the same frequency.

Working Principle:

Basic Components
A transformer consists of two coils, known as windings—the "primary winding" connected to the AC power source, and the "secondary winding" connected to the load. These windings are wound around a core typically made of magnetic material (such as iron). The core serves to concentrate and guide the magnetic field generated by the current flowing through the primary winding.

Principle of Electromagnetic Induction
When AC current flows through the primary winding, it produces a continuously changing magnetic field. According to Faraday's Law of Electromagnetic Induction, this changing magnetic field induces a voltage (electromotive force, or EMF) in the secondary winding, even though the two windings are not electrically connected.

Voltage Transformation
The voltage induced in the secondary winding depends on the turns ratio—the ratio of the number of turns in the secondary winding to that in the primary winding. If the secondary has more turns than the primary, the voltage is stepped up; if it has fewer turns, the voltage is stepped down.

Current Transformation
Due to the conservation of power, there is an inverse relationship between voltage and current. When voltage is stepped up, current decreases, and when voltage is stepped down, current increases, thereby maintaining power balance.

Load Connection
The load (such as appliances or machinery) is connected to the secondary winding, which supplies the transformed voltage to power the load.

Isolation and Galvanic Separation
Transformers provide electrical isolation and galvanic separation between the primary and secondary circuits. This means there is no direct electrical connection between the windings, enhancing safety and preventing unwanted current flow between circuits.

In summary, transformers operate on electromagnetic induction, where a changing magnetic field from the primary winding induces a voltage in the secondary winding. By varying the number of turns in the windings, transformers can step up or step down voltage while maintaining power balance between the primary and secondary circuits. Transformers are essential components in power distribution and transmission systems, enabling efficient and safe electricity delivery.

Give a tip and encourage the author!

Recommended

Impact of DC Bias in Transformers at Renewable Energy Stations Near UHVDC Grounding Electrodes
Impact of DC Bias in Transformers at Renewable Energy Stations Near UHVDC Grounding ElectrodesWhen the grounding electrode of an Ultra-High-Voltage Direct Current (UHVDC) transmission system is located close to a renewable energy power station, the return current flowing through the earth can cause a rise in ground potential around the electrode area. This ground potential rise leads to a shift in the neutral-point potential of nearby power transformers, inducing DC bias (or DC offset) in their
01/15/2026
Distribution Equipment Transformer Testing, Inspection, and Maintenance
1.Transformer Maintenance and Inspection Open the low-voltage (LV) circuit breaker of the transformer under maintenance, remove the control power fuse, and hang a “Do Not Close” warning sign on the switch handle. Open the high-voltage (HV) circuit breaker of the transformer under maintenance, close the grounding switch, fully discharge the transformer, lock the HV switchgear, and hang a “Do Not Close” warning sign on the switch handle. For dry-type transformer maintenance: first clean the porcel
12/25/2025
How to Test Insulation Resistance of Distribution Transformers
In practical work, insulation resistance of distribution transformers is generally measured twice: the insulation resistance between thehigh-voltage (HV) windingand thelow-voltage (LV) winding plus the transformer tank, and the insulation resistance between theLV windingand theHV winding plus the transformer tank.If both measurements yield acceptable values, it indicates that the insulation among the HV winding, LV winding, and transformer tank is qualified. If either measurement fails, pairwise
12/25/2025
Design Principles for Pole-Mounted Distribution Transformers
Design Principles for Pole-Mounted Distribution Transformers(1) Location and Layout PrinciplesPole-mounted transformer platforms should be located near the load center or close to critical loads, following the principle of “small capacity, multiple locations” to facilitate equipment replacement and maintenance. For residential power supply, three-phase transformers may be installed nearby based on current demand and future growth projections.(2) Capacity Selection for Three-Phase Pole-Mounted Tr
12/25/2025
Related Products
Send inquiry
+86
Click to upload file

IEE Business will not sell or share your personal information.

Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.