• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Resistance & Reactance Grounding

Encyclopedia
Field: Encyclopedia
0
China

Resistance Grounding

In resistance grounding, the neutral of the electrical system is linked to the ground via one or multiple resistors. This grounding method serves to restrict fault currents, safeguarding the system against transient overvoltages. By doing so, it reduces the risk of arcing grounds and enables effective ground - fault protection.

The resistance value employed in a neutral grounding system is critical. As illustrated in the figure below, it should be neither excessively high nor too low. An overly high resistance may compromise the effectiveness of fault current limitation, while an extremely low resistance might not adequately protect the system from transient overvoltages and could increase the risk of arcing faults.

image.png

If the resistance value is extremely low, the system effectively functions as a solidly grounded one. Conversely, when the resistance is extremely high, the system behaves as if it were ungrounded. The ideal resistance value is carefully selected to strike a balance: it must limit the ground - fault current, yet ensure that enough ground current still flows to enable the proper operation of ground - fault protection devices. Generally, the ground - fault current can be restricted to a range of 5% to 20% of the current that would occur during a three - phase line fault.

Reactance Grounding

In a reactance - grounded system, as depicted in the figure below, a reactance component is inserted between the neutral point and the ground. This insertion serves the purpose of limiting the fault current, providing a means to control and manage electrical faults within the system.

image.png

In a reactance - grounded system, to effectively reduce transient overvoltages, it is essential that the ground - fault current not fall below 25% of the three - phase fault current. This requirement represents a significantly higher minimum current threshold compared to what is typically desired in a resistance - grounded system. This distinction highlights the different operational characteristics and design considerations between the two grounding methods, emphasizing the unique role of reactance grounding in safeguarding the electrical system against potentially damaging transient overvoltages.

Give a tip and encourage the author!
Recommended
Strange Devices on Transmission Lines: 5 Little-Known Practical Functions(1)
1 Aviation Warning SpheresAviation warning spheres, also known as reflective safety spheres, are used on overhead transmission lines near airports, especially on extra-high-voltage (above 220kV) lines and river-crossing transmission lines. Highly visible aviation marker spheres (aviation warning spheres) must be installed along the lines to provide warning signals.The aviation marker sphere (aviation warning sphere) has a diameter of ф=600mm. The sphere can be manufactured in various bright colo
Leon
09/04/2025
Transmission Line
In transmission lines, a "π" connection involves breaking the original line from Substation A to Substation B and inserting Substation C, forming a "π" configuration. After the "π" connection, the original single line is divided into two independent transmission lines. Following the "π" connection, Substations B and C may both be powered by Substation A (in this case, Substation C receives power via a feeder from Substation B's busbar, or possibly from another voltage point within Substation B);
Encyclopedia
09/04/2025
What are the principles of forced re-energization of transmission lines?
Principles of Forced Re-energization of Transmission LinesRegulations for Forced Re-energization of Transmission Lines Correctly select the forced re-energization end of the line. If necessary, change the connection configuration before forced re-energization, taking into account the reduction of short-circuit capacity and its impact on grid stability. There must be a transformer with its neutral point directly grounded on the busbar at the forced re-energization end. Pay attention to the impact
Edwiin
09/04/2025
Analysis of Accident Handling in Transmission Lines
Analysis of Transmission Line Fault HandlingAs a fundamental component of the power grid, transmission lines are widely distributed and numerous, often exposed to diverse geographical and climatic conditions, making them highly susceptible to faults. Common causes include overvoltage, pollution flashover, insulation damage, tree encroachment, and external damage. Line tripping is one of the most frequent faults in power plant and substation operations, with fault types including single-phase-to-
Leon
09/04/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.