• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What Are the Typical Wiring Diagrams of 35kV Lines?

Leon
Leon
Field: Fault Diagnosis
China

Typical Wiring Diagram of 35kV Line Radial π Connection

When a 35kV line adopts a radial power grid structure, a single - side power supply or a double - side power supply radial type can be used according to the situation of the power supply points, and a loop - out interval is reserved at the end of the line.

Typical Wiring Diagram of 35kV Line Radial T - Connection

For double - radial lines, it is advisable to select a double - side power supply. When the power supply points do not meet the requirements, a same - side power supply can be adopted.

Typical Wiring Diagram of 35kV Line Loop - type π Connection

When the upper - level power supply points do not meet the requirements for constructing a chain - type structure, a loop - type can be used as a transition structure for the chain - type structure.

Typical Wiring Diagram of 35kV Line Chain - type π Connection

In areas with high load density such as downtown areas and urban districts, as well as areas with high requirements for power supply reliability, chain - type wiring can be adopted.

Give a tip and encourage the author!
Recommended
Three-Phase SPD: Types, Wiring & Maintenance Guide
Three-Phase SPD: Types, Wiring & Maintenance Guide
1. What Is a Three-Phase Power Surge Protective Device (SPD)?A three-phase power surge protective device (SPD), also known as a three-phase lightning arrester, is specifically designed for three-phase AC power systems. Its primary function is to limit transient overvoltages caused by lightning strikes or switching operations in the power grid, thereby protecting downstream electrical equipment from damage. The SPD operates based on energy absorption and dissipation: when an overvoltage event occ
James
12/02/2025
Adjustment Test Operation and Precautions of High-Voltage Power Distribution Cabinets in Power Systems
Adjustment Test Operation and Precautions of High-Voltage Power Distribution Cabinets in Power Systems
1. Key Points for Debugging High-Voltage Power Distribution Cabinets in Power Systems1.1 Voltage ControlDuring the debugging of high-voltage power distribution cabinets, voltage and dielectric loss show an inverse relationship. Insufficient detection accuracy and large voltage errors will lead to increased dielectric loss, higher resistance, and leakage. Therefore, it is necessary to strictly control the resistance under low-voltage conditions, analyze current and resistance values, and avoid ex
Oliver Watts
11/26/2025
Railway 10kV Power Through Lines: Design & Operation Requirements
Railway 10kV Power Through Lines: Design & Operation Requirements
The Daquan Line has a large power load, with numerous and scattered load points along the section. Each load point has a small capacity, with an average of one load point every 2-3 km, so two 10 kV power through lines should be adopted for power supply. High-speed railways use two lines for power supply: primary through line and comprehensive through line. The power sources of the two through lines are taken from the dedicated bus sections fed by the voltage regulators installed in each power di
Edwiin
11/26/2025
Analysis of Causes of Power Line Loss and Loss Reduction Methods
Analysis of Causes of Power Line Loss and Loss Reduction Methods
In power grid construction, we should focus on actual conditions and establish a grid layout suitable for our own needs. We need to minimize power loss in the grid, save social resource investment, and comprehensively improve China's economic benefits. Relevant power supply and electricity departments should also set work goals centered on effectively reducing power loss, respond to energy conservation calls, and build green social and economic benefits for China.1.Current Status of China's Powe
Echo
11/26/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.