• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Characteristic of Separately Excited DC Generator

Encyclopedia
Field: Encyclopedia
0
China

Definition of Separately Excited DC Generator

A separately excited DC generator is defined as a DC generator where the field winding is powered by an external source.

a325e1860108a90b8c58519dfb77d147.jpeg

Magnetic or Open Circuit Characteristic

The curve which gives the relation between field current (If) and the generated voltage (E0) in the armature on no load is called magnetic or open circuit characteristic of a DC generator. The plot of this curve is practically same for all types of generators, whether they are separately excited or self-excited. This curve is also known as no load saturation characteristic curve of DC generator.

The figure shows how the generated emf varies with field current at different fixed armature speeds without any load. Higher constant speeds result in a steeper curve. Even when the field current is zero, residual magnetism in the poles produces a small initial emf (OA).

Let us consider a separately excited DC generator giving its no load voltage E0 for a constant field current. If there is no armature reaction and armature voltage drop in the machine then the voltage will remain constant. Therefore, if we plot the rated voltage on the Y axis and load current on the X axis then the curve will be a straight line and parallel to X-axis as shown in figure below. Here, AB line indicating the no load voltage (E0).

When the generator is loaded then the voltage drops due to two main reasons-

  • Due to armature reaction,

  • Due to ohmic drop (IaRa).

插图 (2).jpeg

 Internal Characteristic Curve

The internal characteristic curve of a separately excited DC generator is created by subtracting the armature reaction drops from the no-load voltage. This curve shows the actual generated voltage (Eg), which slightly drops with load current. The AC line in the diagram represents this curve, also known as the total characteristic of a separately excited DC generator.

External Characteristic Curve

The internal characteristic curve of a separately excited DC generator is created by subtracting the armature reaction drops from the no-load voltage. This curve shows the actual generated voltage (Eg), which slightly drops with load current. The AC line in the diagram represents this curve, also known as the total characteristic of a separately excited DC generator.

The external characteristic of the separately excited DC generator is obtained by subtracting the drops due to ohmic loss (Ia Ra) in the armature from generated voltage (Eg).

Terminal voltage(V) = Eg – Ia Ra.

This curve gives the relation between the terminal voltage (V) and load current. The external characteristic curve lies below the internal characteristic curve. Here, AD line in the diagram below is indicating the change in terminal voltage(V) with increasing load current. It can be seen from figure that when load current increases then the terminal voltage decreases slightly. This decrease in terminal voltage can be maintained easily by increasing the field current and thus increasing the generated voltage. Therefore, we can get constant terminal voltage.

6f0330032a553618c2bfffd3ffa5c326.jpeg

Advantages and Disadvantages

Separately excited DC generators provide stable operation and a wide voltage range but are costly due to the need for an external power source.

Give a tip and encourage the author!
Recommended
Ensuring Reliability: A Deep Dive into Transformer Maintenance
IntroductionElectric transformers are the backbone of modern power distribution systems, silently enabling the reliable delivery of electricity to homes, businesses, and industries. As these critical assets age and the demand for uninterrupted power grows, the importance of diligent transformer maintenance has never been greater. This essay explores the essential role of transformer maintenance, highlighting the value of proactive care, the impact of advanced diagnostic technologies, and the tra
Vziman
09/03/2025
What factors need to be considered when designing a transformer?
Transformer design is a complex process that requires consideration of multiple factors to ensure safe and efficient operation. In addition, compliance with international and local regulations is essential to guarantee that transformers meet safety and performance standards. Below are key factors to consider in transformer design and the relevant regulations to follow:Transformer Design Factors: Voltage and Frequency: Determine the input and output voltage levels and the operating frequency. The
Vziman
09/02/2025
What failure modes are possible in a transformer? How to identify and fix these failures?
Transformers are critical components in power systems, and various failure modes can affect their operation. Timely identification and resolution of these failure modes are essential to prevent costly downtime and ensure system reliability. Below are some common transformer failure modes, along with methods to identify and address them: Insulation FailureIdentification: Insulation failure leads to decreased insulation resistance, which can be detected through insulation resistance testing (megge
Edwiin
09/02/2025
Fault Analysis and Treatment of Oil-Immersed Transformers
Oil Leakage at Welded JointsOil leakage at welded joints primarily stems from poor welding quality, such as incomplete or detached welds, and defects like pinholes and gas pores. Although oil-immersed transformers are initially coated with solder and paint during manufacturing, potentially masking these issues temporarily, the defects tend to surface during operation. Additionally, electromagnetic vibration can cause weld cracks, leading to oil leakage.To resolve such leaks, the first critical s
Edwiin
08/29/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.