• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Construction of AC Energy Meter

Encyclopedia
Field: Encyclopedia
0
China

Energy Meter Definition


An energy meter, also known as a watt-hour meter, is a device that measures electrical power consumption.


Main Components

Driving System


The components of this system are two silicon steel laminated electromagnets. The upper electromagnet is called shunt magnet and it carries a voltage coil consisting of many turns of thin wire. The lower electromagnet is called series magnet and it carries the two current coils consisting of a few turns of thick wire. Current coils are connected in series with the circuit and load current passes through it.


The voltage coil connects to the supply mains, producing a high inductance to resistance ratio. Copper bands in the lower part of the shunt magnet provide frictional compensation, ensuring a 90-degree phase angle between the shunt magnet flux and the supply voltage.


9dd3ad2d216544f1bcfb3bd31a660f32.jpeg


Moving System


As you can see in the figure, there is a thin aluminum disk placed in the gap between the two electromagnets and mounted on a vertical shaft. The eddy currents are induced in the aluminum disk when it cuts the flux produced by both the magnets. As a result of interference of eddy currents and two magnetic fields constitute a deflecting torque in the disk. As you start consuming power the disk slowly starts rotating and the several rotation of the disk displays the power consumption, in the particular interval of time. Normally it is measured in kilowatt-hours.


Braking System


The main part of this system is a permanent magnet called brake magnet. It is located near the disk so that eddy currents are induced in it due to movement of rotating disk through the magnetic field. This eddy current reacts with the flux and exerts a braking torque which opposes the motion of the disk. The speed of the disk can be controlled by changing flux.


Registering System


As its name suggest, it registers the number of rotation of the disk which is proportional to the energy consumed directly in kilowatt-hour. There is a disk spindle which is driven by a gear on the disk shaft and indicates the number of times the disk has turned.


Working Principle of Energy Meter


The working of single phase induction type energy meters are based on two main fundamentals:


Rotation of an Aluminum Disk


The rotation of metallic disk is operated by two coils. Both the coils are arranged in such way that one coil produces a magnetic field in proportion to voltage and the other coil creates a magnetic field proportion to current. The field produced by voltage coil is delayed by 90o so that eddy current is induced in the disk. The force exerted on the disk by the two fields is proportional to the product of the immediate current and voltage in the coils.


This interaction causes a lightweight aluminum disk to rotate in an air gap. When there is no power supply, the disk needs to stop. A permanent magnet acts as a brake, opposing the disk’s rotation and balancing its speed with power consumption.


10e7b5008396cac0226afbef9d0aebee.jpeg


Arrangement of Counting and Displaying the Energy Consumed


In this system, the rotation of the floating disk has been counted and then displayed on the meter window. The aluminum disk is connected to a spindle which has a gear. This gear drives the register and the revolution of the disk has been counted and displayed on the register which has series of dials and each dial represent a single digit. 


There is a small display window in the front of the meter which displays the reading of energy consumed with the help of dials. There is a copper shading ring at the central limb of the shunt magnet. To make the phase angle between flux produced by shunt magnet and supply voltage about 900, small adjustments in the place of the ring is required.


ac4a53385b485d3f595450c911b9c345.jpeg

Give a tip and encourage the author!
Recommended
Ensuring Reliability: A Deep Dive into Transformer Maintenance
IntroductionElectric transformers are the backbone of modern power distribution systems, silently enabling the reliable delivery of electricity to homes, businesses, and industries. As these critical assets age and the demand for uninterrupted power grows, the importance of diligent transformer maintenance has never been greater. This essay explores the essential role of transformer maintenance, highlighting the value of proactive care, the impact of advanced diagnostic technologies, and the tra
Vziman
09/03/2025
How does a transformer work?
Transformer Operation PrincipleA transformer is an electrical device that operates on the principle of electromagnetic induction to transfer electrical energy from one circuit to another. It enables the adjustment of voltage levels within an alternating current (AC) system, either stepping up (increasing) or stepping down (decreasing) voltage while maintaining the same frequency.Working Principle:Basic ComponentsA transformer consists of two coils, known as windings—the "primary winding" connect
Rockwell
09/03/2025
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
Edwiin
08/30/2025
Transformer Connection Sections
Transformer Connection DesignationsThe transformer connection designation indicates the winding connection method and the phase relationship between the line voltages of the primary and secondary windings. It consists of two parts: letters and a number. The letters on the left denote the connection configurations of the high-voltage and low-voltage windings, while the number on the right is an integer from 0 to 11.This number represents the phase shift of the low-voltage winding's line voltage r
Encyclopedia
08/15/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.