• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


RC Phase Shift Oscillator

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

RC Phase Shift Oscillator


An RC phase shift oscillator is defined as an electronic circuit that uses resistor-capacitor (RC) networks to produce a consistent oscillating output signal.


RC phase-shift oscillators use resistor-capacitor (RC) network (Figure 1) to provide the phase-shift required by the feedback signal. They have excellent frequency stability and can yield a pure sine wave for a wide range of loads.


Ideally a simple RC network is expected to have an output which leads the input by 90 o.


6cb0b5cdcbbc9474808dcd6c74e30fd2.jpeg


In practice, the phase difference is often less than ideal due to non-ideal capacitor behavior. The phase angle of the RC network is mathematically expressed as


c4b04c4238ec36a4705fe7ee379c47e8.jpeg


Where, X C = 1/(2πfC) is the reactance of the capacitor C and R is the resistor. In oscillators, these kind of RC phase-shift networks, each offering a definite phase-shift can be cascaded so as to satisfy the phase-shift condition led by the Barkhausen Criterion.


One such example is the case in which RC phase-shift oscillator is formed by cascading three RC phase-shift networks, each offering a phase-shift of 60o, as shown by Figure 2.


Here the collector resistor RC limits the collector current of the transistor, resistors R 1 and R (nearest to the transistor) form the voltage divider network while the emitter resistor RE improves the stability.Next, the capacitors CE and Co are the emitter by-pass capacitor and the output DC decoupling capacitor, respectively. Further, the circuit also shows three RC networks employed in the feedback path.


3e4ef10218d258e2ea89d979d86ae831.jpeg


This arrangement causes the output waveform to shift by 180o during its course of travel from output terminal to the base of the transistor. Next, this signal will be shifted again by 180o by the transistor in the circuit due to the fact that the phase-difference between the input and the output will be 180o in the case of common emitter configuration. This makes the net phase-difference to be 360o, satisfying the phase-difference condition.


One more way of satisfying the phase-difference condition is to use four RC networks, each offering a phase-shift of 45o. Hence it can be concluded that the RC phase-shift oscillators can be designed in many ways as the number of RC networks in them is not fixed. However it is to be noted that, although an increase in the number of stages increases the frequency stability of the circuit, it also adversely affects the output frequency of the oscillator due to the loading effect.


The generalized expression for the frequency of oscillations produced by a RC phase-shift oscillator is given by


Where, N is the number of RC stages formed by the resistors R and the capacitors C.


Further, as is the case for most type of oscillators, even the RC phase-shift oscillators can be designed using an OpAmp as its part of the amplifier section (Figure 3). Nevertheless, the mode of working remains the same while it is to be noted that, here, the required phase-shift of 360 o is offered collectively by the RC phase-shift networks and the Op-Amp working in inverted configuration.


c1cfe33b825395e6191207e764cb4ff3.jpeg


The frequency of RC phase-shift oscillators can be adjusted by altering the capacitors, typically through gang-tuning, while the resistors usually remain fixed. Next, by comparing the RC phase-shift oscillators with LC oscillators, one can note that, the former uses more number of circuit components than the latter one. 


Thus, the output frequency produced from the RC oscillators can deviate much from the calculated value rather than in the case of LC oscillators. Nevertheless, they are used as local oscillators for synchronous receivers, musical instruments and as low and/or audio-frequency generators.


9d931c0b4880bcb668deb7f0ac0815c7.jpeg

 


Give a tip and encourage the author!
Recommended
What Are Combined Transformer Standards? Key Specs & Tests
What Are Combined Transformer Standards? Key Specs & Tests
Combined Instrument Transformers: Technical Requirements and Testing Standards Explained with DataA combined instrument transformer integrates a voltage transformer (VT) and a current transformer (CT) into a single unit. Its design and performance are governed by comprehensive standards covering technical specifications, testing procedures, and operational reliability.1. Technical RequirementsRated Voltage:The primary rated voltages include 3kV, 6kV, 10kV, and 35kV, among others. The secondary v
Edwiin
10/23/2025
MVDC: Future of Efficient, Sustainable Power Grids
MVDC: Future of Efficient, Sustainable Power Grids
The Global Energy Landscape Is Undergoing a Fundamental Transformation toward a "fully electrified society," characterized by widespread carbon-neutral energy and the electrification of industry, transportation, and residential loads.In today’s context of high copper prices, critical mineral conflicts, and congested AC power grids, Medium-Voltage Direct Current (MVDC) systems can overcome many limitations of traditional AC networks. MVDC significantly enhances transmission capacity and efficienc
Edwiin
10/21/2025
Grounding Causes of Cable Lines and the Principles of Incident Handling
Grounding Causes of Cable Lines and the Principles of Incident Handling
Our 220 kV substation is located far from the urban center in a remote area, surrounded primarily by industrial zones such as Lanshan, Hebin, and Tasha Industrial Parks. Major high-load consumers in these zones—including silicon carbide, ferroalloy, and calcium carbide plants—account for approximately 83.87% of our bureau’s total load. The substation operates at voltage levels of 220 kV, 110 kV, and 35 kV.The 35 kV low-voltage side mainly supplies feeders to ferroalloy and silicon carbide plants
Felix Spark
10/21/2025
Overhead Power Lines & Towers: Types, Design & Safety
Overhead Power Lines & Towers: Types, Design & Safety
Besides ultra-high voltage AC substations, what we encounter more frequently are power transmission and distribution lines. Tall towers carry conductors that leap across mountains and seas, stretching into the distance before reaching cities and villages. This is also an interesting topic—today, let's explore transmission lines and their supporting towers.Power Transmission and DistributionFirst, let’s understand how electricity is delivered. The electric power industry primarily consists of fou
Encyclopedia
10/21/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.