RC Phase Shift Oscillator

Encyclopedia
09/14/2024

RC Phase Shift Oscillator


An RC phase shift oscillator is defined as an electronic circuit that uses resistor-capacitor (RC) networks to produce a consistent oscillating output signal.


RC phase-shift oscillators use resistor-capacitor (RC) network (Figure 1) to provide the phase-shift required by the feedback signal. They have excellent frequency stability and can yield a pure sine wave for a wide range of loads.


Ideally a simple RC network is expected to have an output which leads the input by 90 o.


6cb0b5cdcbbc9474808dcd6c74e30fd2.jpeg


In practice, the phase difference is often less than ideal due to non-ideal capacitor behavior. The phase angle of the RC network is mathematically expressed as


c4b04c4238ec36a4705fe7ee379c47e8.jpeg


Where, X C = 1/(2πfC) is the reactance of the capacitor C and R is the resistor. In oscillators, these kind of RC phase-shift networks, each offering a definite phase-shift can be cascaded so as to satisfy the phase-shift condition led by the Barkhausen Criterion.


One such example is the case in which RC phase-shift oscillator is formed by cascading three RC phase-shift networks, each offering a phase-shift of 60o, as shown by Figure 2.


Here the collector resistor RC limits the collector current of the transistor, resistors R 1 and R (nearest to the transistor) form the voltage divider network while the emitter resistor RE improves the stability.Next, the capacitors CE and Co are the emitter by-pass capacitor and the output DC decoupling capacitor, respectively. Further, the circuit also shows three RC networks employed in the feedback path.


3e4ef10218d258e2ea89d979d86ae831.jpeg


This arrangement causes the output waveform to shift by 180o during its course of travel from output terminal to the base of the transistor. Next, this signal will be shifted again by 180o by the transistor in the circuit due to the fact that the phase-difference between the input and the output will be 180o in the case of common emitter configuration. This makes the net phase-difference to be 360o, satisfying the phase-difference condition.


One more way of satisfying the phase-difference condition is to use four RC networks, each offering a phase-shift of 45o. Hence it can be concluded that the RC phase-shift oscillators can be designed in many ways as the number of RC networks in them is not fixed. However it is to be noted that, although an increase in the number of stages increases the frequency stability of the circuit, it also adversely affects the output frequency of the oscillator due to the loading effect.


The generalized expression for the frequency of oscillations produced by a RC phase-shift oscillator is given by


Where, N is the number of RC stages formed by the resistors R and the capacitors C.


Further, as is the case for most type of oscillators, even the RC phase-shift oscillators can be designed using an OpAmp as its part of the amplifier section (Figure 3). Nevertheless, the mode of working remains the same while it is to be noted that, here, the required phase-shift of 360 o is offered collectively by the RC phase-shift networks and the Op-Amp working in inverted configuration.


c1cfe33b825395e6191207e764cb4ff3.jpeg


The frequency of RC phase-shift oscillators can be adjusted by altering the capacitors, typically through gang-tuning, while the resistors usually remain fixed. Next, by comparing the RC phase-shift oscillators with LC oscillators, one can note that, the former uses more number of circuit components than the latter one. 


Thus, the output frequency produced from the RC oscillators can deviate much from the calculated value rather than in the case of LC oscillators. Nevertheless, they are used as local oscillators for synchronous receivers, musical instruments and as low and/or audio-frequency generators.


9d931c0b4880bcb668deb7f0ac0815c7.jpeg

 


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Automatic Voltage Regulator?
What is Automatic Voltage Regulator?
An automatic voltage regulator is employed to regulate voltage, converting fluctuating voltages into a constant one. Voltage fluctuations mainly stem from variations in the load on the supply system. Such voltage variations can damage the equipment within the power system. These fluctuations can be mitigated by installing voltage - control equipment at various locations, such as near transformers, generators, and feeders. Multiple voltage regulators are often placed throughout the power system t
Edwiin
05/22/2025
What is Static Voltage Regulator?
What is Static Voltage Regulator?
Types of Static Voltage RegulatorThe static voltage regulator is superior to electromechanical regulators in respect of the accuracy of control, response, reliability and maintenance. The static voltage regulator is mainly classified into two types. They are;Servo Type Voltage RegulatorMagnetic Amplifier RegulatorThe types of static voltage regulator are described below in details;Servo Type Voltage RegulatorThe main feature of the servo type voltage regulator is the use of the amplidyne. The am
Edwiin
05/21/2025
What is Arc Extinction Circuit Breaker?
What is Arc Extinction Circuit Breaker?
When the current-carrying contacts of a circuit breaker separate, an arc forms and persists briefly after contact separation. This arc is hazardous due to the heat energy it generates, which can produce explosive forces.A circuit breaker must extinguish the arc without damaging equipment or endangering personnel. The arc significantly influences the breaker’s performance. Interrupting aDC arcis inherently more challenging than anAC arc. In an AC arc, the current naturally reaches zero duri
Edwiin
05/20/2025
Air Break Circuit Breaker
Air Break Circuit Breaker
In an air break circuit breaker, the arc is initiated and extinguished in substantially static air as the arc moves. These breakers are used for low voltages, generally up to 15 kV, with rupturing capacities of 500 MVA. As an arc-quenching medium, air circuit breakers offer several advantages over oil, including:Elimination of risks and maintenance associated with oil use.Absence of mechanical stress caused by gas pressure and oil movement.Elimination of costs from regular oil replacement due to
Edwiin
05/20/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!