• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Voltage Source: What is it

Electrical4u
Field: Basic Electrical
0
China

What is a Voltage Source?

A voltage source is defined as a device that delivers electric power to a connected circuit. In simpler terms, it’s like a push force that keeps the electrons moving continuously through the wire it’s connected to. Think of it as a pump in a water system, only this pump is for electrons in a wire. This voltage source is commonly used in many electrical devices and systems.

A voltage source usually comes as a two-terminal device, meaning it has two points for connection – one for the incoming electrons and one for the outgoing. This concept forms the backbone of our day-to-day electricity usage, powering everything from your mobile phone to your kitchen appliances.

Types of Voltage Sources

The main types of voltage sources include:

  • Independent Voltage Source: They are of two subtypes – Direct Voltage Source and Alternating Voltage Source.

  • Dependent Voltage Source: They are of two subtypes – Voltage Controlled Voltage Source and Current Controlled Voltage Source.

Independent Voltage Source

An independent voltage source can deliver steady voltage (fixed or variable with time) to the circuit and it does not depend on any other elements or quantity in the circuit.

Direct Voltage Source or Time Invariant Voltage Source

The voltage source which can produce or deliver constant voltage as output is termed as Direct Voltage Source. The flow of electrons will be in one direction that is polarity will be always same. The movement of electrons or currents will be in one direction always. The value of voltage will not alter with time. Example: DC generator, battery, Cells etc.
independent voltage source

Alternating Voltage Source

The voltage source which can produce or deliver alternating voltage as output is termed as Alternating Voltage Source. Here, the polarity gets reversed at regular intervals. This voltage causes the current to flow in one direction for a time and after that in a different direction for another time. That means it is time-varying. Example: DC to AC converter, alternator etc.
alternating voltage source

Dependent or Controlled Voltage Source

The voltage source which delivers an output voltage that is not steady or fixed and it always depends on other quantities such as voltage or current in any other part of the circuit is termed a dependent voltage source.

They have four terminals. When the voltage source depends on voltage in any other part of the circuit, then it is called Voltage Controlled Voltage Source (VCVS).

When the voltage source depends on current in any other part of the circuit, then it is called Current Controlled Voltage Source (CCVS) (shown in the figure below).
dependent or controlled voltage source

Ideal Voltage Source

The voltage source can deliver constant voltage to the circuit and it is also referred to as an independent voltage source as it is independent of the current that the circuit draws. The value of internal resistance is zero here. That is, no power is wasted owing to internal resistance.

In spite of the load resistance or current in the circuit, this voltage source will give steady voltage. It performs as a 100% efficient voltage source. All of the voltage of the ideal voltage source can drop perfectly to the load in the circuit.
ideal voltage source
To understand an ideal voltage source, we can take an example of a circuit shown above. The battery shown here is an ideal voltage source that delivers 1.7V. The internal resistance RIN = 0Ω. The resistance load in the circuit RLOAD = 7Ω. Here, we can see the load will receive all of the 1.7V of the battery.

Real or Practical Voltage Source

Next, we can consider a circuit with a practical voltage source having an internal resistance of 1Ω in a similar circuit which is explained above. Due to the internal resistance, there will be a small amount of voltage drop in the RIN.

So, the output voltage will be reduced to 1.49V from 1.7V. So in practical cases, there will be a reduction in source voltage due to the internal resistance.
real or practical voltage source
We can now conclude that the ideal voltage source is kept as model and the real voltage source is made with minimum internal resistance to get the voltage source close to the ideal one with minimum power loss.

Source: Electrical4u.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.


Give a tip and encourage the author!
Recommended
Difference Between Electromagnet and Permanent Magnet
Electromagnets vs. Permanent Magnets: Understanding the Key DifferencesElectromagnets and permanent magnets are the two primary types of materials that exhibit magnetic properties. While both generate magnetic fields, they differ fundamentally in how these fields are produced.An electromagnet generates a magnetic field only when an electric current flows through it. In contrast, a permanent magnet inherently produces its own persistent magnetic field once it has been magnetized, without requirin
Edwiin
08/26/2025
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
What is a Pure Resistive AC Circuit?
Pure Resistive AC CircuitA circuit containing only a pure resistanceR(in ohms) in an AC system is defined as a Pure Resistive AC Circuit, devoid of inductance and capacitance. Alternating current and voltage in such a circuit oscillate bidirectionally, generating a sine wave (sinusoidal waveform). In this configuration, power is dissipated by the resistor, with voltage and current in perfect phase—both reaching their peak values simultaneously. As a passive component, the resistor neither
Edwiin
06/02/2025
What is a Pure Capacitor Circuit?
Pure Capacitor CircuitA circuit comprising only a pure capacitor with capacitanceC(measured in farads) is termed a Pure Capacitor Circuit. Capacitors store electrical energy within an electric field, a characteristic known ascapacitance(alternatively referred to as a "condenser"). Structurally, a capacitor consists of two conductive plates separated by a dielectric medium—common dielectric materials include glass, paper, mica, and oxide layers. In an ideal AC capacitor circuit, the current
Edwiin
06/02/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.