What is a Pure Resistive AC Circuit?

Edwiin
06/02/2025

Pure Resistive AC Circuit
A circuit containing only a pure resistance R (in ohms) in an AC system is defined as a Pure Resistive AC Circuit, devoid of inductance and capacitance. Alternating current and voltage in such a circuit oscillate bidirectionally, generating a sine wave (sinusoidal waveform). In this configuration, power is dissipated by the resistor, with voltage and current in perfect phase—both reaching their peak values simultaneously. As a passive component, the resistor neither generates nor consumes electric power; instead, it converts electrical energy into heat.
Explanation of Resistive Circuit
In an AC circuit, the voltage-to-current ratio is influenced by supply frequency, phase angle, and phase difference. Notably, in an AC resistive circuit, the resistance value remains constant regardless of the supply frequency.
Consider an alternating voltage applied across the circuit, described by the equation:
Then the instantaneous value of current flowing through the resistor shown in the figure below will be:

The value of current will be maximum when ωt= 90° or sinωt = 1.Putting the value of sinωt in equation (2) we will get

Phase Angle and Waveform in Resistive Circuit
From Equations (1) and (3), it is evident that no phase difference exists between the applied voltage and the current in a pure resistive circuit—the phase angle between voltage and current is zero. Consequently, in an AC circuit with pure resistance, the current is in perfect phase with the voltage, as illustrated in the waveform diagram below:
Power in Pure Resistive Circuit
The power curve waveform uses three colors—red, blue, and pink—to represent the current, voltage, and power curves, respectively. The phasor diagram confirms that current and voltage are in phase, meaning their peaks occur simultaneously. As a result, the power curve remains positive for all voltage and current values.
In a DC circuit, power is defined as the product of voltage and current. Similarly, in an AC circuit, power is calculated using the same principle, though it considers the instantaneous values of voltage and current. Thus, the instantaneous power in a pure resistive circuit is expressed by:
Instantaneous power: p = vi

 The average power consumed in the circuit over a complete cycle is given by

As the valve of cosωt is zero.So, putting the value of cosωt in equation (4) the value of power will be given by

Where,

  • P – average power
  • Vr.m.s – root mean square value of supply voltage
  • Ir.m.s – root mean square value of the current

Hence, the power in a purely resistive circuit is given by:

In a pure resistive circuit, voltage and current are in perfect phase with a zero phase angle, meaning no phase difference exists between them. The alternating quantities reach their peak values at the same time intervals, and the rise and fall of voltage and current occur simultaneously.

Edwiin

How to Design and Install a Solar PV System?
How to Design and Install a Solar PV System?
Design and Installation of Solar PV SystemsModern society relies on energy for daily needs like industry, heating, transport, and agriculture, mostly met by non-renewable sources (coal, oil, gas). However, these cause environmental harm, are unevenly distributed, and face price volatility due to limited reserves—driving demand for renewable energy.Solar energy, abundant and capable of meeting global needs, stands out. Standalone PV systems (Fig 1) offer energy independence from utilities.
Edwiin
07/17/2025
Load Frequency Control (LFC) & Turbine Governor Control (TGC) in Power System
Load Frequency Control (LFC) & Turbine Governor Control (TGC) in Power System
Brief Introduction to Thermal Generating UnitsElectricity generation relies on both renewable and non - renewable energy resources. Thermal generating units represent a conventional approach to power production. In these units, fuels such as coal, nuclear energy, natural gas, biofuel, and biogas are combusted within a boiler.The boiler of a generating unit is an extremely complex system. In its simplest conception, it can be visualized as a chamber whose walls are lined with pipes, through which
Edwiin
06/06/2025
Why 3-Phase Power? Why Not 6, 12 or More for Power Transmission?
Why 3-Phase Power? Why Not 6, 12 or More for Power Transmission?
It is well-known that single-phase and three-phase systems are the most prevalent configurations for power transmission, distribution, and end-use applications. While both serve as fundamental power supply frameworks, three-phase systems offer distinct advantages over their single-phase counterparts.Notably, multi-phase systems (such as 6-phase, 12-phase, etc.) find specific applications in power electronics—particularly in rectifier circuits and variable frequency drives (VFDs)—wher
Edwiin
06/05/2025
How Many Poles and Towers are Situated Within a 1-km Span?
How Many Poles and Towers are Situated Within a 1-km Span?
The number of distribution poles and transmission towers within a 1-kilometer stretch of overhead lines varies significantly based on multiple factors, including voltage level, power line type, supporting structure, geographical location, local regulations, and specific grid requirements.In urban areas, distribution utility poles are typically positioned at closer intervals, while in rural regions, they are spaced farther apart. Additionally, the use of taller structures for higher-voltage trans
Edwiin
06/05/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!