
Βασική Έννοια της Λύσης
Πέρα από τους περιορισμούς της μαγνητικής κυρτώσεως, χρησιμοποιεί την αρχή της ηλεκτρομαγνητικής επαναφοράς για καινοτόμο σχεδιασμό. Επιτυγχάνει ακριβή μέτρηση υψηλοσυχνών ρευμάτων, συστατικών ρευμάτων και υψηλών αρμονικών, λύνοντας τα προβλήματα διαστροφής των παραδοσιακών CT με σιδηρούχο πυρήνα σε περιπτώσεις πολύπλοκων μορφών κύματος.
Αρχιτεκτονική Τεχνικής Λύσης
|
Κύρια Μονάδα |
Τεχνικά Χαρακτηριστικά |
Επιδοσιακά Σημεία |
|
Ενισχυτής Ολοκλήρωσης |
Εξαιρετικά χαμηλό εισερχόμενο ρεύμα παράκλισης (≤1pA) |
Παραμετρική Διαφορά: ±0.5μV/°C |
|
Καταναλωτής Ολοκλήρωσης |
Πολυπροπυλενικός Φίλτρος (Βαθμός C0G) |
Σταθερότητα Καταναλωτή >99%@ -40~125°C |
|
Δυναμική Αντιστάθμιση |
Προσαρμοστικό δίκτυο ανατροφοδότησης |
Εξάλειψη Διαφοράς Ολοκλήρωσης >40dB |
|
Επέκταση Πλάτους Συχνοτήτων |
Πολυστάδιο ενεργό φιλτράρισμα |
Απόκριση Συχνότητας: DC ~ 1MHz |
Κύρια Πλεονεκτήματα Σε Σύγκριση με τα Παραδοσιακά CT
|
Σενάριο Πόνηξης |
Οριακότητες των Παραδοσιακών CT με Σιδηρούχο Πυρήνα |
Πλεονεκτήματα Αυτής της Λύσης |
|
Υψηλό Ρεύμα Κατάληψης |
Αποτυχία μέτρησης λόγω μαγνητικής κυρτώσεως |
Χωρίς μαγνητική κυρτώση |
|
Συστατικό Συστατικό |
Δεν μπορεί να μετρήσει σταθερό συστατικό ρεύμα |
Υποστηρίζει ακριβή μέτρηση συστατικού συστατικού |
|
Υψηλοσυχνές Αρμονικές |
Εξάλειψη υψηλοσυχνού σήματος λόγω απώλειας πυρήνα |
<0.5% διαστροφή @ 100kHz αρμονική |
|
Πολύπλοκες Μορφές Κύματος |
Παρατεταμένη φάση και διαστροφή μορφής κύματος |
Ζητούμενη Καθυστέρηση <10ns |
|
Ευελιξία Εγκατάστασης |
Απαιτεί εγκατάσταση με αποσύνδεση / Περιορισμένος χώρος |
Ευέλικτος σχεδιασμός με διαχωρισμένο πυρήνα, 3 δευτερόλεπτα εγκατάσταση |
Τυπικά Σενάρια Εφαρμογής
Σύνοψη Κλειδιά Τεχνικών Παραμέτρων
|
Είδος |
Παράμετρος |
|
Εύρος Μέτρησης |
10mA ~ 100kA (Παροξυσμικό) |
|
Απόκριση Συχνότητας |
DC – 1.5MHz (-3dB) |
|
Σφάλμα Γραμμικότητας |
≤ ±0.2% FS |
|
Διάμετρος Μονταγής |
Φ50mm ~ Φ300mm (Προσαρμοστικό) |
|
Επιχειρησιακή Θερμοκρασία |
-40℃ ~ +85℃ |
|
Πιστοποιήσεις Ασφάλειας |
IEC 61010, EN 50178 |
Σύνοψη Αξίας Λύσης
Τρισδιάστατες Τεχνολογικές Προσεγγίσεις: