• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Voltage Transformer Solution: Transient Response Monitoring for Renewable Energy Stations

Ⅰ. Background and Pain Points
Renewable energy stations (photovoltaic/wind power) face complex transient processes due to the large-scale application of power electronic devices, including: inverter shutdown surges, broadband resonance, and DC component interference. Conventional PTs/CTs are limited by bandwidth, response speed, and anti-saturation capability, making them unable to accurately capture transient voltage waveforms. This leads to protection misoperations, difficulty in fault location, and reduced equipment lifespan.

Ⅱ. Transient Response Monitoring Solution for Renewable Energy Stations
This solution is specifically designed for transient processes in renewable energy stations, with its core capability being wide-bandwidth, high-precision voltage measurement from DC to 5kHz.

  • Technical Focus: Wide-Band Measurement Capability (DC-5kHz)
    Breaks through the bandwidth limitations of conventional transformers, covering key transient signals such as sub-synchronous oscillation (SSO), switching-frequency harmonics, high-frequency resonance, and slow DC offsets.
  • Key Technologies
    Resistive-Capacitive Divider + Rogowski Coil Integration:
     • Resistive-Capacitive Divider: Provides precise wide-band voltage measurement (10Hz-5kHz) with fast transient response and strong anti-interference.
     • Rogowski Coil: Measures the high-frequency current rate-of-change (di/dt). Integrated complementary signals construct a complete wide-band voltage signal, extending the effective bandwidth to 5kHz and overcoming single-sensor limitations.
     ​0.5Hz Low-Frequency Phase Compensation Circuit:
    For system ultra-low-frequency sub-synchronous oscillations (e.g., <1Hz), employs dedicated compensation algorithms and low-noise analog circuits to maintain phase error <0.1° at 0.5Hz, ensuring phase authenticity and amplitude accuracy of sub-synchronous components.
    Anti-DC Component Saturation Design (120% DC Offset):
    Employs high-Bsat nanocrystalline magnetic cores combined with active bias compensation technology. Withstands sustained DC offsets up to 120% of rated voltage without saturation, preventing measurement distortion caused by DC components from inverter faults or grid asymmetry.
  • Dynamic Performance Specifications
    Step Response Time: <20μs – Ensures rapid capture of instantaneous overvoltages caused by switching actions (e.g., IGBT turn-off).
    Harmonic Measurement Accuracy: Up to 51st order (2500Hz@50Hz) – THD accuracy ±0.5% – Meets requirements for precise power quality assessment and resonance analysis.
    Transient Overvoltage Recording Resolution: 10μs/point (equivalent to 100ksps sampling) – Provides high-resolution waveform recording for millisecond-level transient events (e.g., lightning strikes, ground faults).
  • Application Scenarios
    PV Inverter Turn-off Overvoltage Monitoring: Precisely measures voltage spikes during IGBT turn-off (dv/dt >10kV/μs), locates the source of reflected wave overvoltages, and optimizes RC snubber parameters and cable layout.
    Wind Farm Collection Line Resonance Analysis: Captures broadband resonance (e.g., 2-5kHz) caused by interactions between long cable distributed capacitance and SVGs/generator sets. Provides characteristic harmonic spectra and attenuation characteristics to guide active damping parameter tuning.
    Sub-Synchronous Oscillation (SSO/SSR) Monitoring: Accurately records phase and amplitude changes of sub-synchronous oscillation voltages within the 0.5-10Hz range, providing core data for oscillation source localization and suppression strategies.
    Protection Misoperation Analysis Due to DC Components: Provides accurate fundamental component measurements even under significant DC offset conditions, preventing protection device misjudgments caused by transformer saturation.
07/07/2025
Recommended
Engineering
Integrated Wind-Solar Hybrid Power Solution for Remote Islands
Abstract​This proposal presents an innovative integrated energy solution that deeply combines wind power, photovoltaic power generation, pumped hydro storage, and seawater desalination technologies. It aims to systematically address the core challenges faced by remote islands, including difficult grid coverage, high costs of diesel power generation, limitations of traditional battery storage, and scarcity of freshwater resources. The solution achieves synergy and self-sufficiency in "power suppl
Engineering
An Intelligent Wind-Solar Hybrid System with Fuzzy-PID Control for Enhanced Battery Management and MPPT
Abstract​This proposal presents a wind-solar hybrid power generation system based on advanced control technology, aiming to efficiently and economically address the power needs of remote areas and special application scenarios. The core of the system lies in an intelligent control system centered around an ATmega16 microprocessor. This system performs Maximum Power Point Tracking (MPPT) for both wind and solar energy and employs an optimized algorithm combining PID and fuzzy control for precise
Engineering
Cost-Effective Wind-Solar Hybrid Solution: Buck-Boost Converter & Smart Charging Reduce System Cost
Abstract​This solution proposes an innovative high-efficiency wind-solar hybrid power generation system. Addressing core shortcomings in existing technologies—such as low energy utilization, short battery lifespan, and poor system stability—the system employs fully digitally controlled buck-boost DC/DC converters, interleaved parallel technology, and an intelligent three-stage charging algorithm. This enables Maximum Power Point Tracking (MPPT) over a wider range of wind speeds and s
Engineering
Hybrid Wind-Solar Power System Optimization: A Comprehensive Design Solution for Off-Grid Applications
Introduction and Background​​1.1 Challenges of Single-Source Power Generation Systems​Traditional standalone photovoltaic (PV) or wind power generation systems have inherent drawbacks. PV power generation is affected by diurnal cycles and weather conditions, while wind power generation relies on unstable wind resources, leading to significant fluctuations in power output. To ensure a continuous power supply, large-capacity battery banks are necessary for energy storage and balance. However, bat
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.