• Automatic Recloser Controller
  • Automatic Recloser Controller
Automatic Recloser Controller
discuss personally
Model
RWK-351HBV
Basic info
Brand RW Energy
Model NO. Automatic Recloser Controller
Rated voltage 230V ±20%
Rated frequency 50/60Hz
Electric energy consumption ≤5W
Version V2.3.3
Series RWK-35
Product Detail

Description

RWK-35 is an intelligent medium Voltage controller used in overhead line grid monitoring for the purpose of overhead line protection. It can be equipped with CW(VB) type vacuum circuit breaker to achieve automatic monitoring, fault analysis and store event records.

This unit offers safe line switching of faults on the power grid and provides automatic power recovery. RWK-35 series is suitable for up to 35kV outdoor switchgear include: vacuum circuit breakers, oil circuit breakers and gas circuit breakers. RWK-35 intelligent controller is equipped with line protection, control, measurement and monitoring of Voltage and current signals integrated automation and control devices outdoors.

RWK is a automatic management unit for single way/multi ways/ring network/two power sourcing, provided with all Voltage and current signals and all functions. RWK-35 column switch intelligent controller supports: Wireless (GSM/GPRS/CDMA), Ethernet mode, WIFI, optical fiber, power line carrier, RS232/485, RJ45 and other forms of communication, and can access other station premises equipment (such as TTU, FTU, DTU, etc.).

Main function introduction

1. Protection relay functions:

1) 79 Auto Reclose (Reclose) ,

2) 50P Instantaneous/Definite-Time Overcurrent (P.OC) ,

3) 51P Phase Time-Overcurrent(P.Fast curve/P.Delay curve),

4) 50/67P Directional Phase Overcurrent (P.OC-Direction mode (2-Forward /3-Reverse)),

5) 51/67P Directional Phase Time-Overcurrent (P.Fast curve/P.Delay curve-Direction mode (2-Forward/3-Reverse)),

6) 50G/N Ground Instantaneous/Definite-Time Overcurrent (G.OC),

7) 51G/N Ground Time-Overcurrent (G.Fast curve/G.Delay curve),

8) 50/67G/N Directional Ground Overcurrent (G.OC- Direction mode (2-Forward/3-Reverse)) ,

9) 51/67G/P Directional Ground Time-Overcurrent (P.Fast curve/P.Delay curve-Direction  mode (2-Forward/3-Reverse)),

10) 50SEF Sensitive Earth Fault (SEF), 

11) 50/67G/N Directional Sensitive Earth Fault (SEF-Direction mode (2-Forward/ 3-Reverse)) ,

12) 59/27TN Earth Fault Protection With 3RD Harmonics (SEF-Harmonic inhibit enabled) ,

13)  51C   Cold Load,

14) TRSOTF Switch-Onto-Fault (SOTF) ,

15) 81 Frequency protection ,

16) 46 Negative- Sequence Overcurrent (Nega.Seq.OC),

17) 27 Under Voltage (L.Under volt),

18) 59 Over Voltage (L.Over volt),

19) 59N Zero-Sequence Over Voltage (N.Over volt),

20) 25N Synchronism-Check,

21) 25/79 Synchronism-Check/Auto Reclose,

22) 60 Voltage unbalance,

23) 32 Power direction, 

24) Inrush,

25) Loss of phase, 

26) Live load block, 

27) High gas, 

28) High temperature,

29) hotline protection.

2. Supervision functions:

1) 74T/CCS Trip & Close Circuit Supervision,

2) 60VTS.   VT Supervision.

3. Control functions: 

1) 86    Lockout, 

2) circuit-breaker control.

4. Monitoring Functions: 

1) Primary/Secondary Phases and Earth Currents,

2) Phases Current with 2nd Harmonics and Earth Current With 3RD Harmonics, 

3) Direction, Primary/Secondary Line and Phase Voltages,

4) Apparent Power and Power Factor,

5) Real and Reactive Power, 

6) Energy and History Energy,

7) Max Demand and Month Max Demand, 

8) Positive Phase Sequence Voltage,

9) Negative Phase Sequence Voltage & Current,

10) Zero Phase Sequence Voltage,

11) Frequency, Binary Input/Output status,

12) Trip circuit healthy/failure,

13) Time and date,

14) Trip, alarm,

15) signal records, Counters,

16) Wear, Outage.

5. Communication functions:

a. Communication interface: RS485X1,RJ45X1

b. Communication protocol: IEC60870-5-101; IEC60870-5-104; DNP3.0;  Modbus-RTU

c. PC software: RWK381HB-V2.1.3,The address of the information body can be edited and queried by PC software,

d. SCADA system: SCADA systems that support the four protocols shown in "b.”.

6. Data Storage functions:

1) Event Records,

2) Fault Records,

3) Measurands.

7. remote signaling remote measuring, remote controlling function can be customized address.

Technology parameters

 paramete.png

Device structure

RWK-35尺寸图-Model.png

控制器的应用方案.png

About customization

The following optional functions are available: Power supply rated at 110V/60Hz, cabinet heating defrosting device, battery upgrade to lithium battery or other storage equipment, GPRS communication module,1~2 signal indicators,1~4 protection pressure plates, the second voltage transformer, custom aviation socket signal definition.

For detailed customization, please contact the salesman.

 

Q: What is a recloser?

A: The reclosing device is a device that can automatically detect the fault current, and automatically cut off the circuit when the fault occurs, and then perform multiple reclosing operations.

Q: What is the function of the recloser?

A: It is mainly used in the distribution network. When there is a temporary fault in the line (such as a branch touching the line for a short time), the reclosing device restores power supply by reclosing operation, which greatly reduces the outage time and scope and improves power supply reliability.

Q: How does the recloser determine the type of failure?

A: It monitors characteristics such as the magnitude and duration of fault currents. If the fault is permanent, after a preset number of reclosing, the reclosing device will be locked to avoid further damage to the device.

Q: What are the application scenarios of reclosers?

A: It is widely used in the urban distribution network and rural power supply network, which can effectively cope with various possible line failures and ensure the stable supply of power.


Know your supplier
RW Energy
Zhejiang Rockwell Energy Technology Co., Ltd. is an international enterprise specializing in the research, development and manufacturing of recloser controllers, power quality management, power monitoring systems and other high-end power equipment. In today's critical period of global energy transition and power system upgrading, the company has gathered a group of top talents in the fields of power engineering, automation control, software development, etc., who carry the enthusiasm and persistence for the power business, and are committed to overcoming the complex problems in the power system, and promoting the intelligent development of the power industry with innovative technology. Mission: To make global electricity smarter, more reliable and more efficient with innovative technology. Vision: To be the leader in global power intelligence.
Main Categories
High Voltage Electrical Apparatus/New energy/Tester
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$100000000
Professional Experience
12 years
Workplace
30000m²
占位
占位
Documents
Restricted.
RWK-35 Automatic Recloser controller
Manual English
Consulting
FAQ
Q: What is inverse time overcurrent protection
A:
The acting time of inverse time overcurrent protection is inversely proportional to the size of the fault current. The larger the fault current, the shorter the action time; the smaller the fault current, the longer the action time. This type of protection can be more reasonably adapted to the situation of different sizes of fault current, and has been widely used in the power system.
Related Products
Related Knowledges
Ensuring Reliability: A Deep Dive into Transformer Maintenance
Ensuring Reliability: A Deep Dive into Transformer Maintenance
IntroductionElectric transformers are the backbone of modern power distribution systems, silently enabling the reliable delivery of electricity to homes, businesses, and industries. As these critical assets age and the demand for uninterrupted power grows, the importance of diligent transformer maintenance has never been greater. This essay explores the essential role of transformer maintenance, highlighting the value of proactive care, the impact of advanced diagnostic technologies, and the tra
Vziman
09/03/2025
How does a transformer work?
How does a transformer work?
Transformer Operation PrincipleA transformer is an electrical device that operates on the principle of electromagnetic induction to transfer electrical energy from one circuit to another. It enables the adjustment of voltage levels within an alternating current (AC) system, either stepping up (increasing) or stepping down (decreasing) voltage while maintaining the same frequency.Working Principle:Basic ComponentsA transformer consists of two coils, known as windings—the "primary winding" connect
Rockwell
09/03/2025
Constant testing of high-voltage cable lines
Constant testing of high-voltage cable lines
1. Definition of High-Voltage Cable Line Constant TestingHigh-voltage cable line constant testing refers to the systematic measurement, using specialized instruments, of electrical parameters such as resistance, inductance, capacitance, and conductance before a cable line is commissioned or after major maintenance. The aim is to obtain fundamental data characterizing the electromagnetic properties of the cable, serving as a critical testing phase that provides accurate parameter support for powe
Oliver Watts
09/03/2025
Technical Analysis of 220 kV High-Voltage Cable Construction in Winter
Technical Analysis of 220 kV High-Voltage Cable Construction in Winter
1.Work Environment Requirements and Safeguard MeasuresBased on technical requirements for cable equipment storage, laying, transportation, laying, transposition, testing, and cable terminations, the project owner and construction units have conducted extensive trials and implemented protective measures regarding ambient temperature, humidity, bending radius, traction control, and route optimization. These measures ensure high-voltage cable quality and on-site safety under harsh winter conditions
James
09/03/2025
Withstand voltage test of high-voltage cables
Withstand voltage test of high-voltage cables
Withstand voltage test is an insulation test, but it is a destructive test that can reveal insulation defects difficult to detect in non-destructive testing.The test cycle for high-voltage cables is three years, and it must be conducted after non-destructive tests. In other words, the withstand voltage test is performed only after all non-destructive tests have been passed.Most high-voltage cables used today are cross-linked polyethylene (XLPE) cables, which can have large cross-sections and cov
Oliver Watts
09/03/2025
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
I. Introduction to Cable Grounding Loop CurrentCables rated 110 kV and above use a single-core structure. The alternating magnetic field generated by the operating current induces a voltage on the metallic sheath. If the sheath forms a closed circuit through the earth, a grounding loop current will flow on the metallic sheath. Excessive grounding loop current (loop current exceeding 50 A, more than 20% of the load current, or a ratio of maximum-to-minimum phase current greater than 3) not only a
Felix Spark
09/03/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!