• 610-635 Watt mono-facial module lower LID/LeTID
610-635 Watt mono-facial module lower LID/LeTID
discuss personally
Model
SP-635M-V
SP-630M-V
SP-625M-V
SP-620M-V
SP-615M-V
SP-610M-V
Basic info
Brand Wone
Model NO. 66HL4M-(V) 610-635 Watt MONO-FACIAL MODULE
Maximum Power 635Wp
Series 66HL4M-(V)
Product Detail

Certification

  • IEC61215:2021 / IEC61730:2023 · 

  • IEC61701 / IEC62716 / IEC60068 / IEC62804 ·

  •  ISO9001:2015: Quality Management System ·

  •  ISO14001:2015: Environment Management System ·

  •  ISO45001:2018: Occupational health and safety management systems.

Features

  • N-type modules with Tunnel Oxide Passivating Contacts (TOPcon) technology offer lower LID/LeTID degradation and better low light performance.

  • N-type modules with Solar's HOT 3.0 technology offer better reliability and efficiency.

  • High salt mist and ammonia resistance.

  • Certified to withstand: 5400 Pa front side max static test load 2400 Pa rear side max static test load.

  • Better light trapping and current collection to improve module power output and reliability.

  • Minimizes the chance of degradation caused by PID phenomena through optimization of cell production technology and material control.

image.png

Mechanical Characteristics

image.png

Packaging Configuration

image.png

Specifications (STC)

image.png

Application Conditions

image.png

Engineering Drawings

image.png

image.png

*Note: For specific dimensions and tolerance ranges, please refer to the corresponding detailed module drawings.

Electrical Performance & Temperature Dependence

image.png

image.png

What is the LID/LeTID phenomenon?

LID (Light Induced Degradation) and LeTID (Light and Elevated Temperature Induced Degradation) are two phenomena that affect the performance of solar cells. Especially in high-power output modules, these issues are particularly important. The following is an explanation of the LID and LeTID phenomena and their impact on 610-635 watt single-sided modules.

  • LID:LID refers to the performance degradation phenomenon that occurs when solar cells are exposed to sunlight for the first time. This phenomenon is mainly due to the formation of boron-oxygen complexes in the battery material (usually p-type monocrystalline silicon) under illumination, resulting in a reduction in the efficiency of the battery.

  • LeTID:LeTID is another performance degradation phenomenon. It occurs when the battery operates under high temperature (for example, above 70 °C) and illumination conditions. The performance degradation caused by LeTID is more serious than that of LID, and the recovery speed is slower.




Know your supplier
Wone
Main Categories
High Voltage Electrical Apparatus/Low Voltage Electrical Apparatus/Wire cable/Instrument meters/New energy/Tester/Production equipment/Generator/Electrical fittings/Integrated Electrical Equipment
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$50,000,000
Professional Experience
1 years
Workplace
65666m²m²
占位
占位
Related Products
Related Knowledges
Ensuring Reliability: A Deep Dive into Transformer Maintenance
Ensuring Reliability: A Deep Dive into Transformer Maintenance
IntroductionElectric transformers are the backbone of modern power distribution systems, silently enabling the reliable delivery of electricity to homes, businesses, and industries. As these critical assets age and the demand for uninterrupted power grows, the importance of diligent transformer maintenance has never been greater. This essay explores the essential role of transformer maintenance, highlighting the value of proactive care, the impact of advanced diagnostic technologies, and the tra
Vziman
09/03/2025
How does a transformer work?
How does a transformer work?
Transformer Operation PrincipleA transformer is an electrical device that operates on the principle of electromagnetic induction to transfer electrical energy from one circuit to another. It enables the adjustment of voltage levels within an alternating current (AC) system, either stepping up (increasing) or stepping down (decreasing) voltage while maintaining the same frequency.Working Principle:Basic ComponentsA transformer consists of two coils, known as windings—the "primary winding" connect
Rockwell
09/03/2025
Constant testing of high-voltage cable lines
Constant testing of high-voltage cable lines
1. Definition of High-Voltage Cable Line Constant TestingHigh-voltage cable line constant testing refers to the systematic measurement, using specialized instruments, of electrical parameters such as resistance, inductance, capacitance, and conductance before a cable line is commissioned or after major maintenance. The aim is to obtain fundamental data characterizing the electromagnetic properties of the cable, serving as a critical testing phase that provides accurate parameter support for powe
Oliver Watts
09/03/2025
Technical Analysis of 220 kV High-Voltage Cable Construction in Winter
Technical Analysis of 220 kV High-Voltage Cable Construction in Winter
1.Work Environment Requirements and Safeguard MeasuresBased on technical requirements for cable equipment storage, laying, transportation, laying, transposition, testing, and cable terminations, the project owner and construction units have conducted extensive trials and implemented protective measures regarding ambient temperature, humidity, bending radius, traction control, and route optimization. These measures ensure high-voltage cable quality and on-site safety under harsh winter conditions
James
09/03/2025
Withstand voltage test of high-voltage cables
Withstand voltage test of high-voltage cables
Withstand voltage test is an insulation test, but it is a destructive test that can reveal insulation defects difficult to detect in non-destructive testing.The test cycle for high-voltage cables is three years, and it must be conducted after non-destructive tests. In other words, the withstand voltage test is performed only after all non-destructive tests have been passed.Most high-voltage cables used today are cross-linked polyethylene (XLPE) cables, which can have large cross-sections and cov
Oliver Watts
09/03/2025
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
I. Introduction to Cable Grounding Loop CurrentCables rated 110 kV and above use a single-core structure. The alternating magnetic field generated by the operating current induces a voltage on the metallic sheath. If the sheath forms a closed circuit through the earth, a grounding loop current will flow on the metallic sheath. Excessive grounding loop current (loop current exceeding 50 A, more than 20% of the load current, or a ratio of maximum-to-minimum phase current greater than 3) not only a
Felix Spark
09/03/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!