• 3.6kV-24kV Indoor metal-clad withdrawable switchgear MV Switchgear
3.6kV-24kV Indoor metal-clad withdrawable switchgear MV Switchgear
discuss personally
Model
KYN28-7.2/1250-40
KYN28-3.6/630-40
KYN28-12/1250-50
KYN28-12/2500-3
Basic info
Brand ROCKWILL
Model NO. 3.6KV-24KV Indoor metal-clad withdrawable switchgear MV Switchgear
Rated voltage 7.2kV
Series KYN28-12
Product Detail

Description:

China KYN28-12 indoor metal-clad withdrawable switchgear (hereinafter short as switchgear) is a complete power distribution device for 3.6~24kV,3-phase AC 50Hz,single-bus and single-bus sectionalized system. It is mainly used for power transmission of middle/small generators in power plants; power receiving, transmission for substations in power distribution and power system of factories, mines and enterprises, and starting of large high-voltage motor, etc.,so as to control, protect and monitor the system. The switchgear meets IEC298,GB3906-91.In addition to be used with domestic VS1 vacuum circuit breaker, it can also be used with VD4 from ABB,3AH5 from Siemens domestic ZN65A,and VB2 from GE, etc.,it is truly a power distribution device with good performance. In order to meet the requirement for wall mounting and front-end maintenance, the switchgear is equipped with a special current transformer, so that the operator can maintain and inspect it in front of the cubicle.

  •  Ambient temperature: Maximum temperature:+40℃     Minimum temperature: -15℃.

  •  Ambient humidity: Daily average RH no more than 95%;Monthly average RH no more than 90%.

  •  Altitude no higher than 2500m.

  • The air around without any pollution of duty,smoke,ercode or flammable air,steam or salty fog.

Technical parameters:

image.png

Structure & Basic Components of Switchgear:

image.png

Overall size and weight:

image.png

Notice:

when the rated current is more than 1600A, cubicle width shall de 1000 mm, and cubicle height will be 1660mm and for schema of rear overhead line in.

  • Width of cabinet:650mm(compound insulation)or 800mm(air insulation) at current<1250A.

  • Width of cabinet:1000mm at current>1250A.

  • Depth of cabinet:1400mm,at cabinet width of 650mm(compoud insulation)when employing theconfiguration of incoming and outgoing cables.

  • Depth of cabinet:1500mm,at cabinet width of 6800mm(air insulation)when employing theconfiguration of incoming and outgoing cables.

  • Depth of cabinet:1600mm,when employing the configuration of rear overhead incoming andoutgoing cables.

    image.png

Structure Features:

image.png

Compartment:
Busbar compartment; circuit breaker compartment; cable compartment; low-voltage compartment.

  •  Main device: circuit breaker, contactor.

  •  Current transformers.

  •  Earthing switch.

  •  Voltage transformers.

  •  Support-bushing insulators.

  •  Bushing insulators.

  • Surge arresters.

  • Support insulators (reactance).

  • Main busbars.

  • Connecting (distribution) busbars.

  • Earth-fault current transformer.

  • Earthing conductor.

  • Metal movable particions.

  • Cable ducts (optionally).

  • Vent flaps.

Dimension:

image.png
Dimension in brackets means dimension of heavy-current cubicle.

image.png

What are the application scenarios of indoor metal armored pull-out switch cabinets? 

Industrial Applications:

  • In Industrial Enterprises:

  • Widely used in factories, mines, metallurgy, and chemical industries. They provide medium-voltage power distribution and protection for various production equipment such as large motors, transformers, and electric furnaces. For example, in a steel mill's rolling workshop, medium-voltage switchgear provides reliable power supply to the rolling motors and can quickly cut off the circuit in case of motor overload or short circuit, protecting the motor and the entire production line.

Commercial Buildings and Public Facilities:

  • In Commercial Buildings (e.g., shopping centers, office buildings, hotels) and Public Facilities (e.g., hospitals, schools, stadiums):

  • Used in medium-voltage distribution rooms. They provide power distribution and control for equipment within the buildings, such as elevators, air conditioning, and lighting. For instance, in a hospital, medium-voltage switchgear supplies stable power to various medical equipment and air conditioning systems, ensuring the normal operation of the hospital.

Substations:

  • In Medium-Voltage Substations:

  • Serves as the primary distribution equipment, receiving and distributing power from transmission lines. It can step down the medium-voltage power from the transmission lines and distribute it to various low-voltage lines, or distribute the power to other substations or end-users.


Know your supplier
ROCKWILL
Rockwill Electric Group Global Manufacturer of High voltage and medium-voltage power equipment and smart grid solutions. Headquartered in Wenzhou, China. Serving 100+ countries with quality, innovation, and trust. What We Offer: • HV-MV switchgear (VCB, SF₆ circuit breakers, RMU, GIS) • Distribution transformers and substations • Smart grid and monitoring systems • Solar, wind, EV charging, and energy storage solutions • EPC turnkey power projects Certified: ISO 9001 / ISO 14001 / ISO 45001
Main Categories
High voltage
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150,000,000
Professional Experience
16 years
Workplace
108000m²m²
占位
占位
Related Products
Related Knowledges
Analysis of the Principle of Second - harmonic Restraint for Overcurrent Protection of Distribution Automation Switches
Analysis of the Principle of Second - harmonic Restraint for Overcurrent Protection of Distribution Automation Switches
Substance of Second - harmonic Restraint in Overcurrent ProtectionThe substance of second - harmonic restraint in overcurrent protection is to use the second - harmonic component to judge whether the current is a fault current or an excitation inrush current. When the percentage of the second - harmonic component to the fundamental - wave component is greater than a certain value, it is judged to be caused by the excitation inrush current, and the overcurrent protection is blocked.Therefore, the
Leon
07/18/2025
What are the common faults of low-voltage voltage transformers?
What are the common faults of low-voltage voltage transformers?
Open - Circuit Fault on the Secondary SideOpen - circuit in the secondary side is a typical fault of low - voltage voltage transformers, showing abnormal voltmeter readings (zero/fluctuation), faulty power meters, buzzing noises, and core overheating. When open - circuited, the secondary voltage spikes (no secondary current to balance the primary EMF), causing core saturation, flux distortion, and potential overheating/damage.Causes include loose terminals, poor contact, or human error. In low
Felix Spark
07/18/2025
What are the typical connection methods for 35kV distribution lines?
What are the typical connection methods for 35kV distribution lines?
Typical Wiring Diagram of 35kV Line Radial π ConnectionWhen a 35kV line adopts a radial power grid structure, a single - side power supply or a double - side power supply radial type can be used according to the situation of the power supply points, and a loop - out interval is reserved at the end of the line.Typical Wiring Diagram of 35kV Line Radial T - ConnectionFor double - radial lines, it is advisable to select a double - side power supply. When the power supply points do not meet the r
Leon
07/18/2025
Why are the ground fault point and the accident point not at the same location?
Why are the ground fault point and the accident point not at the same location?
Fault Transfer VoltageIn low - voltage distribution systems, there is a type of personal electric shock accident where the accident occurrence point and the system fault point are not at the same location. This kind of accident occurs because after a ground fault happens elsewhere, the generated fault voltage is conducted to the metal casings of other equipment through the PE wire or PEN wire. When the fault voltage on the metal casing of the equipment is higher than the human - body safe voltag
Leon
07/18/2025
Analysis of Transformer Capacity, Load Rate and Number of Units Selection Issues
Analysis of Transformer Capacity, Load Rate and Number of Units Selection Issues
The safe and economical operation of power transformers is related to the safety, economy, stability, and reliability of the operations of various industries. The limitations of conditions such as the investment economic indicators for its selection, the economic benefits of maintenance and operation, and the adaptability in the new environment (access of distributed power sources, configuration of energy storage, etc.) make it impossible to include comprehensive factors in other aspects.The cap
Leon
07/17/2025
Analysis of the Impact of Immersion on the Performance of Low-Voltage Current Transformers
Analysis of the Impact of Immersion on the Performance of Low-Voltage Current Transformers
1 IntroductionLow - voltage current transformers for metering, with a through - core type epoxy resin structure, are widely used in distribution transformer areas and for small - to - medium - sized industrial and commercial electricity consumption. As a range expander for electric energy metering, their performance directly relates to electricity consumption safety and the accuracy of users' trade calculations. Studying long - term immersion's impact on these transformers is practically signifi
Felix Spark
07/17/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!