• 15.6kV MV Auto Circuit outdoor vacuum recloser
  • 15.6kV MV Auto Circuit outdoor vacuum recloser
15.6kV MV Auto Circuit outdoor vacuum recloser
$5000.00
Model
RCW-S15.6M/1250-25C
RCW-S15.6M/1250-25
RCW-S15.6M/800-20C
RCW-S15.6M/800-20
RCW-S15.6M/630-16C
RCW-S15.6M/630-16
RCW-S15.6M/400-12.5C
RCW-S15.6M/400-12.5
Basic info
Brand ROCKWILL
Model NO. 15.6kV MV Auto Circuit outdoor vacuum recloser
Rated voltage 15.6kV
Rated normal current 1250A
Rated short circuit breaking current 25kA
Power frequency withstand voltage 60kV/min
Rated lightning impulse voltage 125kV
manual closing Yes
Series RCW
Product Detail

Description:

The RCW   series automatic circuit reclosers can use on overhead distribution lines as well as distribution substation applications for allvoltage classes 11kV up to 38kV at 50/60Hz power system.  and it’s rated current can reach 1250A.The RCW   series automatic circuit reclosers integrates the functions of control, protection, measurement, communication, fault detection, on-line monitoring of closing or opening.The RCW   series vacuum recloser is mainly combined with integration terminal, current transformer, permanent magnetic actuator and it’s recloser controller.

Features:

  • Optional grades available in rated current range.

  • With optional relay protection and logic for user selection.

  • With optional communication protocols and I/O ports for users to choose.

  • PC software for controller testing, setup, programming, updates.

Parameters:

image.png

image.png

Environmental requirement:

image.png

Product show:

正方型 单相.png

What are the technical parameters of the outdoor vacuum recloser?

  • Rated Voltage: 38kV, indicating the voltage level at which the recloser can operate normally. This ensures that the insulation and electrical performance of the device meet the required standards at this voltage.

  • Rated Current: Available in various specifications, such as 800A, 1200A, etc. This represents the maximum current that the recloser can carry continuously during normal operation. The appropriate rated current value should be selected based on the load current of the line.

  • Rated Short-Circuit Breaking Current: Reflects the breaking capability of the recloser during short-circuit faults. Common specifications include 16kA, 20kA, etc. A higher short-circuit breaking current indicates that the recloser can more reliably interrupt short-circuit currents, protecting the safety of the power system.

  • Rated Short-Circuit Making Current: Represents the maximum peak current that the recloser can close during a short-circuit fault. This value is typically greater than the rated short-circuit breaking current to ensure that the recloser can reliably close and withstand the impact of short-circuit currents at the moment of fault.

  • Reclosing Time Interval: Generally adjustable between 0.5 seconds and several seconds. Depending on the requirements of different power systems and types of faults, an appropriate reclosing time interval can be set to enhance the reliability and continuity of power supply.

Know your supplier
ROCKWILL
Rockwill Electric Group Global Manufacturer of High voltage and medium-voltage power equipment and smart grid solutions. Headquartered in Wenzhou, China. Serving 100+ countries with quality, innovation, and trust. What We Offer: • HV-MV switchgear (VCB, SF₆ circuit breakers, RMU, GIS) • Distribution transformers and substations • Smart grid and monitoring systems • Solar, wind, EV charging, and energy storage solutions • EPC turnkey power projects Certified: ISO 9001 / ISO 14001 / ISO 45001
Main Categories
High voltage
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150,000,000
Professional Experience
16 years
Workplace
108000m²m²
占位
占位
Related Products
Related Knowledges
Analysis of the Principle of Second - harmonic Restraint for Overcurrent Protection of Distribution Automation Switches
Analysis of the Principle of Second - harmonic Restraint for Overcurrent Protection of Distribution Automation Switches
Substance of Second - harmonic Restraint in Overcurrent ProtectionThe substance of second - harmonic restraint in overcurrent protection is to use the second - harmonic component to judge whether the current is a fault current or an excitation inrush current. When the percentage of the second - harmonic component to the fundamental - wave component is greater than a certain value, it is judged to be caused by the excitation inrush current, and the overcurrent protection is blocked.Therefore, the
Leon
07/18/2025
What are the common faults of low-voltage voltage transformers?
What are the common faults of low-voltage voltage transformers?
Open - Circuit Fault on the Secondary SideOpen - circuit in the secondary side is a typical fault of low - voltage voltage transformers, showing abnormal voltmeter readings (zero/fluctuation), faulty power meters, buzzing noises, and core overheating. When open - circuited, the secondary voltage spikes (no secondary current to balance the primary EMF), causing core saturation, flux distortion, and potential overheating/damage.Causes include loose terminals, poor contact, or human error. In low
Felix Spark
07/18/2025
What are the typical connection methods for 35kV distribution lines?
What are the typical connection methods for 35kV distribution lines?
Typical Wiring Diagram of 35kV Line Radial π ConnectionWhen a 35kV line adopts a radial power grid structure, a single - side power supply or a double - side power supply radial type can be used according to the situation of the power supply points, and a loop - out interval is reserved at the end of the line.Typical Wiring Diagram of 35kV Line Radial T - ConnectionFor double - radial lines, it is advisable to select a double - side power supply. When the power supply points do not meet the r
Leon
07/18/2025
Why are the ground fault point and the accident point not at the same location?
Why are the ground fault point and the accident point not at the same location?
Fault Transfer VoltageIn low - voltage distribution systems, there is a type of personal electric shock accident where the accident occurrence point and the system fault point are not at the same location. This kind of accident occurs because after a ground fault happens elsewhere, the generated fault voltage is conducted to the metal casings of other equipment through the PE wire or PEN wire. When the fault voltage on the metal casing of the equipment is higher than the human - body safe voltag
Leon
07/18/2025
Analysis of Transformer Capacity, Load Rate and Number of Units Selection Issues
Analysis of Transformer Capacity, Load Rate and Number of Units Selection Issues
The safe and economical operation of power transformers is related to the safety, economy, stability, and reliability of the operations of various industries. The limitations of conditions such as the investment economic indicators for its selection, the economic benefits of maintenance and operation, and the adaptability in the new environment (access of distributed power sources, configuration of energy storage, etc.) make it impossible to include comprehensive factors in other aspects.The cap
Leon
07/17/2025
Analysis of the Impact of Immersion on the Performance of Low-Voltage Current Transformers
Analysis of the Impact of Immersion on the Performance of Low-Voltage Current Transformers
1 IntroductionLow - voltage current transformers for metering, with a through - core type epoxy resin structure, are widely used in distribution transformer areas and for small - to - medium - sized industrial and commercial electricity consumption. As a range expander for electric energy metering, their performance directly relates to electricity consumption safety and the accuracy of users' trade calculations. Studying long - term immersion's impact on these transformers is practically signifi
Felix Spark
07/17/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!