• 15kV/1250A MV outdoor vacuum Auto Circuit recloser
  • 15kV/1250A MV outdoor vacuum Auto Circuit recloser
  • 15kV/1250A MV outdoor vacuum Auto Circuit recloser
15kV/1250A MV outdoor vacuum Auto Circuit recloser
$5000.00
Model
RCW-E15M/1250-25C
RCW-E15M/1250-25
RCW-E15M/800-20C
RCW-E15M/800-20
RCW-E15M/630-16C
RCW-E15M/630-16
RCW-E15M/400-12.5C
RCW-E15M/400-12.5
RCW-E15M/400-12.5
RCW-F15M/1250-25C
RCW-F15M/1250-25
RCW-F15M/800-20C
RCW-F15M/800-20
RCW-F15M/400-12.5C
RCW-F15M/400-12.5
RCW-F15M/630-16
RCW-F15M/630-16C
Basic info
Brand ROCKWILL
Model NO. 15kV/1250A MV outdoor vacuum Auto Circuit recloser
Rated voltage 15kV
Rated normal current 1250A
Rated short circuit breaking current 25kA
Power frequency withstand voltage 28kV/min
Rated lightning impulse voltage 95kV
manual closing Yes
Mechanical lock No
Series RCW
Product Detail

Description:

The RCW   series automatic circuit reclosers can use on overheaddistribution lines as well as distribution substation applications for all voltage classes 11kV up to 38kV at 50/60Hz power system.  and it’s rated current can reach 1250A.The RCW   series automatic circuit reclosers integrates the functions of control, protection, measurement, communication, fault detection, on-line monitoring of closing or opening.The RCW   series vacuum recloser is mainly combined with integration terminal, current transformer, permanent magnetic actuator and it’srecloser controller.

Features:

  • Optional grades available in rated current range.

  • With optional relay protection and logic for user selection.

  • With optional communication protocols and I/O ports for users to choose.

  • PC software for controller testing, setup, programming, updates.

Parameters

image.png

image.png


Environmental requirement:

image.png

Product show:

不代手合正方形硅橡胶永磁.png

带手合正方形 硅橡胶永磁带手合.png

What is the vacuum arc extinguishing fault of outdoor vacuum recloser and its solution?

Vacuum Arc Quenching Chamber Faults:

  • Decreased Vacuum Level: This is a common issue with vacuum arc quenching chambers. The vacuum arc quenching chamber relies on a high-vacuum environment to extinguish arcs. If the vacuum level decreases, its insulation performance and arc-quenching ability will significantly deteriorate. The causes of decreased vacuum levels can include poor sealing, such as aging or damaged sealing materials, or tiny leaks present during the manufacturing process. When the vacuum level drops to a certain extent, incomplete arc extinction may occur during current interruption, leading to arc reignition and subsequent line faults.

  • Contact Wear: During frequent opening and closing operations, the contacts of the vacuum arc quenching chamber can wear down due to arc erosion. Contact wear increases contact resistance, which can lead to severe heating of the contacts when normal current passes through, affecting the normal operation of the equipment. Additionally, during fault current interruption, the contacts may not withstand the high current, resulting in contact welding or failure to interrupt the current.

Solutions for Vacuum Arc Quenching Chamber Faults:

Vacuum Level Decrease:

  • Detect Vacuum Level: Use specialized vacuum level detection instruments, such as vacuum level testers, to regularly check the vacuum level of the vacuum arc quenching chamber. Once the vacuum level is found to be below the specified value, the vacuum arc quenching chamber should be replaced promptly.

  • Replace Seals: If you suspect that poor sealing is causing the decrease in vacuum level, inspect and replace the seals. When replacing seals, ensure that you use high-quality, compatible sealing materials and follow the correct installation procedures to prevent further leakage.

Contact Wear:

  • Regular Inspection: Regularly inspect the wear condition of the contacts through observation windows or by disassembling the device. Based on the degree of wear, if the wear exceeds the specified limit, the contacts should be replaced promptly.

  • Optimize Operating Parameters: Analyze the causes of contact wear, such as whether it is due to frequent operations or excessive operating current. If the issue is frequent operation, consider optimizing the recloser's reclosing strategy to reduce unnecessary opening and closing operations. If the issue is excessive operating current, check the line load conditions, adjust the protection settings, and avoid subjecting the contacts to excessive current impacts.


Know your supplier
ROCKWILL
Rockwill Electric Group Global Manufacturer of High voltage and medium-voltage power equipment and smart grid solutions. Headquartered in Wenzhou, China. Serving 100+ countries with quality, innovation, and trust. What We Offer: • HV-MV switchgear (VCB, SF₆ circuit breakers, RMU, GIS) • Distribution transformers and substations • Smart grid and monitoring systems • Solar, wind, EV charging, and energy storage solutions • EPC turnkey power projects Certified: ISO 9001 / ISO 14001 / ISO 45001
Main Categories
High voltage
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150,000,000
Professional Experience
16 years
Workplace
108000m²m²
占位
占位
Related Products
Related Knowledges
Analysis of Transformer Capacity, Load Rate and Number of Units Selection Issues
Analysis of Transformer Capacity, Load Rate and Number of Units Selection Issues
The safe and economical operation of power transformers is related to the safety, economy, stability, and reliability of the operations of various industries. The limitations of conditions such as the investment economic indicators for its selection, the economic benefits of maintenance and operation, and the adaptability in the new environment (access of distributed power sources, configuration of energy storage, etc.) make it impossible to include comprehensive factors in other aspects.The cap
Leon
07/17/2025
Analysis of the Impact of Immersion on the Performance of Low-Voltage Current Transformers
Analysis of the Impact of Immersion on the Performance of Low-Voltage Current Transformers
1 IntroductionLow - voltage current transformers for metering, with a through - core type epoxy resin structure, are widely used in distribution transformer areas and for small - to - medium - sized industrial and commercial electricity consumption. As a range expander for electric energy metering, their performance directly relates to electricity consumption safety and the accuracy of users' trade calculations. Studying long - term immersion's impact on these transformers is practically signifi
Felix Spark
07/17/2025
What is reactive power measurement?
What is reactive power measurement?
The power which exists in the circuit when the voltage and current are out of phase to each other, such type of power is known as the reactive power. The formula measures the reactive power in the circuitReactive Power Measurement & VarmetersReactive power measurement is critical as it indicates circuit power loss: low reactive power worsens load power factor, increasing system losses. Varmeters (volt-ampere reactive meters) measure reactive power and are categorized by circuit phases:Single
Edwiin
07/17/2025
How to Design and Install a Solar PV System?
How to Design and Install a Solar PV System?
Design and Installation of Solar PV SystemsModern society relies on energy for daily needs like industry, heating, transport, and agriculture, mostly met by non-renewable sources (coal, oil, gas). However, these cause environmental harm, are unevenly distributed, and face price volatility due to limited reserves—driving demand for renewable energy.Solar energy, abundant and capable of meeting global needs, stands out. Standalone PV systems (Fig 1) offer energy independence from utilities.
Edwiin
07/17/2025
What are the common faults that occur when low-voltage current transformers are combined with other power equipment?
What are the common faults that occur when low-voltage current transformers are combined with other power equipment?
Low-voltage current transformers, as indispensable measurement and protection devices in power systems, often encounter various faults when used in combination with other power equipment due to environmental factors, equipment linkage issues, and improper installation and maintenance. These faults not only affect the normal operation of power equipment but may also endanger personal safety. Therefore, it is necessary to gain an in-depth understanding of fault types, judgment methods, and prevent
Felix Spark
07/17/2025
What are the monitoring methods and future development trends of low-voltage voltage transformers?
What are the monitoring methods and future development trends of low-voltage voltage transformers?
With the continuous advancement of smart grid technology, intelligent monitoring systems are playing an increasingly important role in preventing and addressing faults in voltage transformers. These modern intelligent monitoring systems can collect key parameters from voltage transformers in real time—such as partial discharge levels, temperature, and oil quality—and use data analysis algorithms to assess the health status of the equipment, enabling early fault warnings and precise l
Echo
07/16/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!