• 12kV Indoor High Voltage Vacuum Circuit Breaker
  • 12kV Indoor High Voltage Vacuum Circuit Breaker
  • 12kV Indoor High Voltage Vacuum Circuit Breaker
12kV Indoor High Voltage Vacuum Circuit Breaker
discuss personally
Model
VDS4-12-3150
VDS4-12-2500
VDS4-12-2000
VDS4-12-1600
VDS4-12-1250
VDS4-12-630
Basic info
Brand ROCKWILL
Model NO. 12kV Indoor High Voltage Vacuum Circuit Breaker
Rated voltage 12kV
Rated normal current 1250A
Series VDS4
Product Detail

Product Introduction

The VDS4 series indoor high-voltage AC vacuum circuit breaker is designed for three-phase AC 50Hz power systems with a rated voltage ranging from 7.2 to 40.5kV. Widely applied in substations, power plants, industrial facilities, airports, and buildings, it excels at controlling and safeguarding electrical equipment. With its capabilities for frequent operations and rapid reclosing, it ensures reliable power management.

This breaker adheres to national standards, including GB/T 1984-2014 "High Voltage AC Circuit Breaker", JB/T 3855-2008 "High Voltage AC Vacuum Circuit Breaker", and DL/T 403-2000 "12kV~40.5kV Indoor AC High Voltage Vacuum Circuit Breaker Ordering Technical Requirements". It also complies with international regulations set by the International Electrotechnical Commission, such as IEC 62271-100, IEC 60694, and IEC 62271-1, guaranteeing quality and global compatibility.

Technical parameters

The following table details the key technical specifications of the product, comprehensively covering electrical performance, mechanical characteristics, and dimensional parameters to provide a clear reference for technical selection and application scenarios.

Features
The product offers multiple significant advantages, which can fully meet the diverse needs of industrial and power systems. Specifically included are:

  •  Excellent Electrical Performance of Fully Enclosed Pole

The main circuit of the VSV series vacuum circuit breaker adopts a fully enclosed structure, available in two types: insulated cylinder or solid pole.

  • Insulated Cylinder Structure:

The main electrical components are longitudinally installed in an epoxy resin cylinder cast via the APG process. This structure offers superior arc resistance, anti-aging properties, and high mechanical strength. It effectively shields the vacuum interrupter from external factors such as mechanical impacts and environmental pollution while enhancing the conductive circuit’s capability to withstand rated short-term (peak) withstand currents.

  • Sealed Pole Structure (P Series):

The miniaturized vacuum interrupter and other main circuit components are directly sealed in epoxy resin using advanced APG technology. This not only simplifies the pole assembly process and improves the reliability of the vacuum interrupter’s conductive circuit but also protects the interrupter’s outdoor surface from external mechanical forces and environmental influences.

  •  Corrosion-Resistant Mechanism with Advanced Design

Structural components undergo super anti-corrosion and anti-salt spray zinc-nickel alloy treatment.

Transmission parts are treated with high-hardness, wear-resistant, and corrosion-resistant nickel-phosphorus alloy.

International brand INA oil-free graphite bearings are used for transmission, ensuring high strength and excellent wear resistance.

  •  C2-Level Circuit Breaker Compliance

During capacitive current interruption, the breaker exhibits an extremely low probability of re-strike, fully meeting the requirements for C2-level circuit breakers.

  •  E2-Level Circuit Breaker Certification

The breaker has successfully passed all tests at the Shenyang High Voltage Electrical Appliance Research Institute and Xi’an High Voltage Electrical Appliance Research Institute testing centers. It complies with the E2-level standard, demonstrating:

  • 30 operations with full-rated short-circuit current for low-current breakers.

  • 20 operations with full-rated short-circuit current for high-current breakers.

 

 

Know your supplier
ROCKWILL
Rockwill Electric Group Global Manufacturer of High voltage and medium-voltage power equipment and smart grid solutions. Headquartered in Wenzhou, China. Serving 100+ countries with quality, innovation, and trust. What We Offer: • HV-MV switchgear (VCB, SF₆ circuit breakers, RMU, GIS) • Distribution transformers and substations • Smart grid and monitoring systems • Solar, wind, EV charging, and energy storage solutions • EPC turnkey power projects Certified: ISO 9001 / ISO 14001 / ISO 45001
Main Categories
High Voltage Electrical Apparatus
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150,000,000
Professional Experience
16 years
Workplace
108000m²m²
占位
占位
Related Products
Related Knowledges
Withstand voltage test of high-voltage cables
Withstand voltage test of high-voltage cables
Withstand voltage test is an insulation test, but it is a destructive test that can reveal insulation defects difficult to detect in non-destructive testing.The test cycle for high-voltage cables is three years, and it must be conducted after non-destructive tests. In other words, the withstand voltage test is performed only after all non-destructive tests have been passed.Most high-voltage cables used today are cross-linked polyethylene (XLPE) cables, which can have large cross-sections and cov
Oliver Watts
09/03/2025
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
I. Introduction to Cable Grounding Loop CurrentCables rated 110 kV and above use a single-core structure. The alternating magnetic field generated by the operating current induces a voltage on the metallic sheath. If the sheath forms a closed circuit through the earth, a grounding loop current will flow on the metallic sheath. Excessive grounding loop current (loop current exceeding 50 A, more than 20% of the load current, or a ratio of maximum-to-minimum phase current greater than 3) not only a
Felix Spark
09/03/2025
Considerations and Recommendations for Flame-Retardant Selection of High-Voltage Cables
Considerations and Recommendations for Flame-Retardant Selection of High-Voltage Cables
1.Flame-Retardant Cable Classification StandardsThe flame-retardant standard system is divided into two main categories. The first category follows the "Classification of Burning Behavior for Electric and Optical Fiber Cables" GB 31247. Cables complying with this standard system are widely used in densely populated areas such as high-speed railways and subways. This standard imposes strict requirements on parameters such as smoke density, heat release, and total smoke production, and cables typi
James
09/03/2025
Repair of high-voltage cable metallic sheaths
Repair of high-voltage cable metallic sheaths
I. Functions of Metallic Sheaths and Necessity of RepairThe metallic sheath of high-voltage cables is a metal shielding structure laid outside the insulation layer, including types such as lead sheaths, aluminum sheaths, and steel wire armor. Its core functions include mechanical protection (resisting external impact and compression), electrochemical corrosion protection (isolating moisture and soil pollutants), electromagnetic shielding (reducing electromagnetic interference to the environment)
Felix Spark
09/03/2025
What factors need to be considered when designing a transformer?
What factors need to be considered when designing a transformer?
Transformer design is a complex process that requires consideration of multiple factors to ensure safe and efficient operation. In addition, compliance with international and local regulations is essential to guarantee that transformers meet safety and performance standards. Below are key factors to consider in transformer design and the relevant regulations to follow:Transformer Design Factors: Voltage and Frequency: Determine the input and output voltage levels and the operating frequency. The
Vziman
09/02/2025
What failure modes are possible in a transformer? How to identify and fix these failures?
What failure modes are possible in a transformer? How to identify and fix these failures?
Transformers are critical components in power systems, and various failure modes can affect their operation. Timely identification and resolution of these failure modes are essential to prevent costly downtime and ensure system reliability. Below are some common transformer failure modes, along with methods to identify and address them: Insulation FailureIdentification: Insulation failure leads to decreased insulation resistance, which can be detected through insulation resistance testing (megge
Edwiin
09/02/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!