• 100kVA 15kV 3 Phase Oil-immersed distribution transformer
100kVA 15kV 3 Phase Oil-immersed distribution transformer
discuss personally
Model
S-M-15KV-100KVA
S-15KV-0.4KV-25KVA
S-30KV-0.4KV-500KVA
S-M-15KV-0.4KV-160KVA
S-15KV-0.4KV-250KVA
S-15KV-0.4KV-2000KVA
S-15KV-0.4KV-500KVA
S-15K-1000KVA
S-M-30KV-50KVA
S-M-30KV-0.4KV-25KVA
S-M-20KV-250KVA
S-M-15KV-50KVA
S-30KV-0.4KV-630KVA
S-M-30KV-1000KVA
S-30KV-400KVA
S-M-30KV-160KVA
S-M-30KV-100KVA
S-M-30KV-50KVA
S-15KV-25KVA
S-M-30KVA-100KVA
S-M-30KV-0.4KV-50KV
S-M-30KV-0.4KV-100KVA
S-M-33KV-0.4KV-50KVA
S-M-30KV-0.4KV-25KVA
RCW-380V
S-M-15Kv-0.4KV-100KVA
Basic info
Brand Vziman
Model NO. 100KVA 15KV 3 PhaseOil-immersed distribution transformer
Rated voltage 15kV
Rated capacity 100kVA
Primary voltage
Secondary voltage
No-load loss
Load loss
Series S-M
Product Detail

Description:

Oil immersed transformer, use ourcompany special calculation and validation procedures to make sure theperformance of products. superior process equipment, elaborate materialselecting and efficient manufacturing make the transformer have smallvolume,light weight,low loss,low partial discharge,low noise characteristics.

The product is stable,reliable,economic, environmental protection. lt can beapplied to many places such as power plants,transformer substation ,largeindustrial mining and petrochemical enterprise and so on.

Features:

  • Ultralow no-load loss.

  • Energy saving and great power consuming efficiency.

  • Copper/ aluminum coil winding, strong short circuit resistance ability.

  • Dyn11 coil connection decrease the influences of harmonic wave.

  • Fully sealed structure for maintenance free.

  • Slow insulation aging & longer serving life.

Parameters:

Oil-immersed distribution transformer three-phase

Model NO.

S-M-100/15/0.4

Product classification

Distribution transformer

Rated capacity

100kVA

Primary voltage

15kV

Secondary voltage

0.4kV

Number of phase

3

Number of winding

2

Rated frequency

50Hz

Tap changer

OCTC

Tap range

±2×2.5%

Vector group

Dyn11

Cooling system

ONAN

No-load loss

>320W

Load loss

>170W

Impedance

4%

Basic insulation level

——

Winding material ( H.V & L.V)

Copper

The way the bushing appears

Porcelain

Power frequency withstand voltage

38kV

Lightning impulse

——

The temperature rise—Winding

62k

The temperature rise --Top oil

57k

Tank color

——

Creepage distance

>576mm

Fitting requirement

——

Environmental requirement

——

Transformer structure

Sealed

Standard

IEC60076

Port of loading

——

HS code

——

Transportation

——


External dimensions:

企业微信截图_17103775276834.png

Size

885mm×875mm×1120mm

Weight

590KG

Environmental requirement:

Max. ambient temperature

——

Altitude

——


Product show:

Yawei 160kVA 10kv Hot Selling Oil-Filled Three-Phase Distribution Transformer with UL


 How to choose the model and specification of oil-immersed three-phase distribution transformer according to load capacity?


Selecting a Transformer Based on Load Capacity:

Calculate Total Load Power:

  • First, it is necessary to determine the total power of the loads to be supplied. For residential areas, this involves considering the total power of all household electrical appliances, including lighting fixtures, televisions, refrigerators, air conditioners, etc. For example, in a residential area with 100 households, if the average power consumption per household is 5 kW (considering the simultaneous use factor), the total load power would be approximately 500 kW.

  • In industrial settings, it is necessary to tally the power of all production equipment, lighting, and office devices within the factory. For instance, in a small mechanical processing plant, the total power of machine tools might be 300 kW, and adding the power of lighting and office devices, the total load power could reach around 350 kW.

Consider Simultaneous Factor and Power Factor:

  • The simultaneous factor refers to the probability that all loads will operate simultaneously at any given moment. In residential areas, the simultaneous factor is generally between 0.4 and 0.6. In industrial settings, it is determined based on production shifts and equipment operating patterns, typically ranging from 0.7 to 0.9.

  • The power factor reflects the efficiency of energy utilization by the load. In scenarios with a high proportion of inductive loads (such as motors), the power factor is lower, usually between 0.7 and 0.9. It is essential to calculate based on actual load conditions and then select the transformer capacity based on the calculated actual load capacity.

Know your supplier
Vziman
Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.
Main Categories
High Voltage Electrical Apparatus
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150000000
Professional Experience
3 years
Workplace
10000m²
占位
占位
Related Products
Related Knowledges
Ensuring Reliability: A Deep Dive into Transformer Maintenance
Ensuring Reliability: A Deep Dive into Transformer Maintenance
IntroductionElectric transformers are the backbone of modern power distribution systems, silently enabling the reliable delivery of electricity to homes, businesses, and industries. As these critical assets age and the demand for uninterrupted power grows, the importance of diligent transformer maintenance has never been greater. This essay explores the essential role of transformer maintenance, highlighting the value of proactive care, the impact of advanced diagnostic technologies, and the tra
Vziman
09/03/2025
How does a transformer work?
How does a transformer work?
Transformer Operation PrincipleA transformer is an electrical device that operates on the principle of electromagnetic induction to transfer electrical energy from one circuit to another. It enables the adjustment of voltage levels within an alternating current (AC) system, either stepping up (increasing) or stepping down (decreasing) voltage while maintaining the same frequency.Working Principle:Basic ComponentsA transformer consists of two coils, known as windings—the "primary winding" connect
Rockwell
09/03/2025
Constant testing of high-voltage cable lines
Constant testing of high-voltage cable lines
1. Definition of High-Voltage Cable Line Constant TestingHigh-voltage cable line constant testing refers to the systematic measurement, using specialized instruments, of electrical parameters such as resistance, inductance, capacitance, and conductance before a cable line is commissioned or after major maintenance. The aim is to obtain fundamental data characterizing the electromagnetic properties of the cable, serving as a critical testing phase that provides accurate parameter support for powe
Oliver Watts
09/03/2025
Technical Analysis of 220 kV High-Voltage Cable Construction in Winter
Technical Analysis of 220 kV High-Voltage Cable Construction in Winter
1.Work Environment Requirements and Safeguard MeasuresBased on technical requirements for cable equipment storage, laying, transportation, laying, transposition, testing, and cable terminations, the project owner and construction units have conducted extensive trials and implemented protective measures regarding ambient temperature, humidity, bending radius, traction control, and route optimization. These measures ensure high-voltage cable quality and on-site safety under harsh winter conditions
James
09/03/2025
Withstand voltage test of high-voltage cables
Withstand voltage test of high-voltage cables
Withstand voltage test is an insulation test, but it is a destructive test that can reveal insulation defects difficult to detect in non-destructive testing.The test cycle for high-voltage cables is three years, and it must be conducted after non-destructive tests. In other words, the withstand voltage test is performed only after all non-destructive tests have been passed.Most high-voltage cables used today are cross-linked polyethylene (XLPE) cables, which can have large cross-sections and cov
Oliver Watts
09/03/2025
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
Analysis of Abnormal Causes of High-Voltage Cable Grounding Circulation and Typical Cases
I. Introduction to Cable Grounding Loop CurrentCables rated 110 kV and above use a single-core structure. The alternating magnetic field generated by the operating current induces a voltage on the metallic sheath. If the sheath forms a closed circuit through the earth, a grounding loop current will flow on the metallic sheath. Excessive grounding loop current (loop current exceeding 50 A, more than 20% of the load current, or a ratio of maximum-to-minimum phase current greater than 3) not only a
Felix Spark
09/03/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!