• 100kVA 15kV 3 Phase Oil-immersed distribution transformer
100kVA 15kV 3 Phase Oil-immersed distribution transformer
$20000.00
Model
S-M-15KV-100KVA
S-15KV-0.4KV-25KVA
S-30KV-0.4KV-500KVA
S-M-15KV-0.4KV-160KVA
S-15KV-0.4KV-250KVA
S-15KV-0.4KV-2000KVA
S-15KV-0.4KV-500KVA
S-15K-1000KVA
S-M-30KV-50KVA
S-M-30KV-0.4KV-25KVA
S-M-20KV-250KVA
S-M-15KV-50KVA
S-30KV-0.4KV-630KVA
S-M-30KV-1000KVA
S-30KV-400KVA
S-M-30KV-160KVA
S-M-30KV-100KVA
S-M-30KV-50KVA
S-15KV-25KVA
S-M-30KVA-100KVA
S-M-30KV-0.4KV-50KV
S-M-30KV-0.4KV-100KVA
S-M-33KV-0.4KV-50KVA
S-M-30KV-0.4KV-25KVA
RCW-380V
S-M-15Kv-0.4KV-100KVA
Basic info
Brand Vziman
Model NO. 100KVA 15KV 3 PhaseOil-immersed distribution transformer
Rated voltage
Rated capacity 50kVA
Primary voltage 15kV
Secondary voltage 0.4kV
No-load loss >220W
Load loss >1000W
Series S-M
Product Detail

Description:

Oil immersed transformer, use ourcompany special calculation and validation procedures to make sure theperformance of products. superior process equipment, elaborate materialselecting and efficient manufacturing make the transformer have smallvolume,light weight,low loss,low partial discharge,low noise characteristics.

The product is stable,reliable,economic, environmental protection. lt can beapplied to many places such as power plants,transformer substation ,largeindustrial mining and petrochemical enterprise and so on.

Features:

  • Ultralow no-load loss.

  • Energy saving and great power consuming efficiency.

  • Copper/ aluminum coil winding, strong short circuit resistance ability.

  • Dyn11 coil connection decrease the influences of harmonic wave.

  • Fully sealed structure for maintenance free.

  • Slow insulation aging & longer serving life.

Parameters:

Oil-immersed distribution transformer three-phase

Model NO.

S-M-100/15/0.4

Product classification

Distribution transformer

Rated capacity

100kVA

Primary voltage

15kV

Secondary voltage

0.4kV

Number of phase

3

Number of winding

2

Rated frequency

50Hz

Tap changer

OCTC

Tap range

±2×2.5%

Vector group

Dyn11

Cooling system

ONAN

No-load loss

>320W

Load loss

>170W

Impedance

4%

Basic insulation level

——

Winding material ( H.V & L.V)

Copper

The way the bushing appears

Porcelain

Power frequency withstand voltage

38kV

Lightning impulse

——

The temperature rise—Winding

62k

The temperature rise --Top oil

57k

Tank color

——

Creepage distance

>576mm

Fitting requirement

——

Environmental requirement

——

Transformer structure

Sealed

Standard

IEC60076

Port of loading

——

HS code

——

Transportation

——


External dimensions:

企业微信截图_17103775276834.png

Size

885mm×875mm×1120mm

Weight

590KG

Environmental requirement:

Max. ambient temperature

——

Altitude

——


Product show:

Yawei 160kVA 10kv Hot Selling Oil-Filled Three-Phase Distribution Transformer with UL


 How to choose the model and specification of oil-immersed three-phase distribution transformer according to load capacity?


Selecting a Transformer Based on Load Capacity:

Calculate Total Load Power:

  • First, it is necessary to determine the total power of the loads to be supplied. For residential areas, this involves considering the total power of all household electrical appliances, including lighting fixtures, televisions, refrigerators, air conditioners, etc. For example, in a residential area with 100 households, if the average power consumption per household is 5 kW (considering the simultaneous use factor), the total load power would be approximately 500 kW.

  • In industrial settings, it is necessary to tally the power of all production equipment, lighting, and office devices within the factory. For instance, in a small mechanical processing plant, the total power of machine tools might be 300 kW, and adding the power of lighting and office devices, the total load power could reach around 350 kW.

Consider Simultaneous Factor and Power Factor:

  • The simultaneous factor refers to the probability that all loads will operate simultaneously at any given moment. In residential areas, the simultaneous factor is generally between 0.4 and 0.6. In industrial settings, it is determined based on production shifts and equipment operating patterns, typically ranging from 0.7 to 0.9.

  • The power factor reflects the efficiency of energy utilization by the load. In scenarios with a high proportion of inductive loads (such as motors), the power factor is lower, usually between 0.7 and 0.9. It is essential to calculate based on actual load conditions and then select the transformer capacity based on the calculated actual load capacity.

Know your supplier
Vziman
Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.
Main Categories
High Voltage Electrical Apparatus
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150000000
Professional Experience
3 years
Workplace
10000m²
占位
占位
Related Products
Related Knowledges
Research and Application of Communication Security Strategies for Smart Meters
Research and Application of Communication Security Strategies for Smart Meters
1. Security Threats Facing Smart Meter Communications1.1 Physical Layer Security ThreatsPhysical layer security threats refer to factors that damage or interfere with the hardware devices and physical connections of smart meters, directly affecting their normal operation and data transmission. From the perspective of equipment damage, harsh natural environments such as lightning strikes, floods, and earthquakes can directly destroy the hardware circuits and structures of smart meters, rendering
Echo
09/01/2025
Analysis of Issues and Causes in Smart Meter Testing
Analysis of Issues and Causes in Smart Meter Testing
1. Issues and Cause Analysis in Smart Electricity Meter TestingDuring the verification of smart electricity meters, inspections must be conducted on the meter’s appearance, as well as the clarity and integrity of nameplate markings. Additionally, careful checks are required for physical damage and whether the display can show digits completely. A power-on inspection is also necessary. If error codes appear on the display after power-up, faults should be identified and addressed according to the
Oliver Watts
09/01/2025
Analysis of Common Operational Fault Causes in Smart Electricity Meters
Analysis of Common Operational Fault Causes in Smart Electricity Meters
With the continuous development of smart grids, smart electricity meters are being increasingly widely applied, and various types of operational faults in smart meters are frequently encountered in energy measurement work. This paper analyzes the causes of smart meter failures and proposes corresponding solutions, using several actual operational fault cases as examples.1. Black ScreenA black screen refers to a powered meter with no display, which is the most commonly occurring fault in field-op
Felix Spark
09/01/2025
What tests are required for a qualified smart electricity meter?
What tests are required for a qualified smart electricity meter?
In today's world, not wearing a watch is no longer unusual, but not having an electricity meter is a serious issue. As a measuring instrument vital to people's daily lives, the electricity meter is an essential tool for power consumption measurement and billing in every household. According to current national strategic requirements for smart grid development, smart electricity meters have been widely applied and promoted, bringing entirely new and extensive market opportunities to the metering
Oliver Watts
09/01/2025
Discussion on Fault Diagnosis and Handling Technologies for Smart Meters in Electricity Inspections
Discussion on Fault Diagnosis and Handling Technologies for Smart Meters in Electricity Inspections
1 Analysis of Smart Meter Faults and Their Impact on the Power Grid1.1 Introduction to Smart Meter Functions and Their Critical Role in Modern Power GridsSmart meters exchange data in real time with power companies through two-way communication, enabling functions such as remote meter reading and dynamic tariff adjustment. This capability allows users to adjust their consumption based on real-time pricing, achieving energy savings and cost reduction. Meanwhile, smart meters support grid automati
Felix Spark
09/01/2025
Analysis of the Integrated Application of Smart Meters and Meter Reading, Verification, and Billing Information Systems
Analysis of the Integrated Application of Smart Meters and Meter Reading, Verification, and Billing Information Systems
Meter reading, verification, and billing are critical operations for power companies, and their efficiency directly impacts the company's sustainable development. In recent years, with the widespread adoption of intelligent technologies, smart meters have been promoted and applied in power companies, driving transformation in meter reading and billing operations. The integrated application of smart meters and meter reading, verification, and billing information systems has become a key developme
Echo
09/01/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!