• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Dielectric Properties of Insulating Materials (Formula & Constant)

Electrical4u
Field: Basic Electrical
0
China

What Are The Dielectric Properties Of Insulating Materials

We can first go through the description of dielectric materials. It actually does not conduct electricity. They are insulators having very low electrical conductivity. So we have to know the difference between dielectric material and insulating material. The difference is that insulators block the flow of current but the dielectrics accumulate electrical energy. In capacitors, it performs as electrical insulators.
dielectric properties of insulation

Next, we can come to the topic. The dielectric properties of insulation include breakdown voltage or dielectric strength, dielectric parameters like permittivity, conductivity, loss angle and power factor. The other properties include electrical, thermal, mechanical and chemical parameters. We can discuss the main properties in detail below.

Dielectric Strength or Breakdown Voltage

The dielectric material has only some electrons in normal operating condition. When the electric strength is increased beyond a particular value, it results in breakdown. That is, the insulating properties are damaged and it finally becomes a conductor. The electrical field strength at the time of breakdown is called breakdown voltage or dielectric strength. It can be expressed in minimum electrical stress that will result in breakdown of the material under some condition.

It can be reduced by ageing, high temperature and moisture. It is given as
Dielectric strength or Breakdown voltage =

V→ Breakdown Potential.
t→ Thickness of the dielectric material.
Relative permittivity
It is also called as specific inductive capacity or dielectric constant. This gives us the information about the
capacitance of the capacitor when the dielectric is used. It is denoted as εr. The capacitance of the capacitor is related with separation of plates or we can say the thickness of dielectrics, cross sectional area of the plates and the character of dielectric material used. A dielectric material having high dielectric constant is favoured for capacitor.
Relative permeability or dielectric constant =

We can see that if we substitute air with any dielectric medium, the capacitance (capacitor) will get improved. The dielectric constant and dielectric strength of some dielectric materials are given below.

Dielectric material

Dielectric Strength(kV/mm)

Dielectric Constant

Air

3

1

Oil

5-20

2-5

Mica

60-230

5-9

Table no.1

Dissipation Factor, Loss Angle and Power Factor

When a dielectric material is given an AC supply, no power utilization takes place. It is perfectly achieved only by vacuum and purified gases. Here, we can see that the charging current will head the voltage applied by 90o which is shown in figure 2A. This implies there is no loss in power in insulators. But most of the cases, there is a dissipation of energy in the insulators when alternating current is applied. This loss is known as dielectric loss. In practical insulators, the leakage current will never lead the voltage applied by 90o (figure 2B). The angle formed by the leakage current is the phase angle (φ). It will be always less than 90. We will also get the loss angle (δ) from this as 90- φ.
dielectric properties of insulation
The equivalent circuit with capacitance and resistor in collateral (parallel) are represented below.
dielectric properties of insulation
From this, we will get the dielectric power loss as

X → Capacitive reactance (1/2πfC)
cosφ → sinδ
In most cases, δ is small. So we can take sinδ = tanδ.

So, tanδ is known as power factor of dielectrics.

The importance of the knowledge of the properties of dielectric material is in the scheming, manufacturing, functioning and recycling of the dielectric (insulating) materials and it can be determined by calculation and measurement.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
Ensuring Reliability: A Deep Dive into Transformer Maintenance
IntroductionElectric transformers are the backbone of modern power distribution systems, silently enabling the reliable delivery of electricity to homes, businesses, and industries. As these critical assets age and the demand for uninterrupted power grows, the importance of diligent transformer maintenance has never been greater. This essay explores the essential role of transformer maintenance, highlighting the value of proactive care, the impact of advanced diagnostic technologies, and the tra
Vziman
09/03/2025
How does a transformer work?
Transformer Operation PrincipleA transformer is an electrical device that operates on the principle of electromagnetic induction to transfer electrical energy from one circuit to another. It enables the adjustment of voltage levels within an alternating current (AC) system, either stepping up (increasing) or stepping down (decreasing) voltage while maintaining the same frequency.Working Principle:Basic ComponentsA transformer consists of two coils, known as windings—the "primary winding" connect
Rockwell
09/03/2025
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
Edwiin
08/30/2025
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.