Basic Concepts of Primary and Secondary Coils in Transformers

Rockwell
08/12/2025

The primary and secondary coils are two fundamental components of a transformer, enabling the transmission and transformation of electrical energy through the principle of electromagnetic induction. The primary coil receives high-voltage current from the input source and generates a varying magnetic field, while the secondary coil, influenced by this magnetic field, produces a corresponding output voltage. Their interaction allows the transformer to perform voltage conversion, facilitating efficient power transmission and distribution.

Position and Structure

In a transformer, both coils are typically wound around a common iron core to ensure effective magnetic coupling through electromagnetic induction. The primary coil is connected to the input side, and the secondary coil to the output side. They are electrically isolated from each other by insulation materials and the core structure, preventing direct current flow.

  • Primary Coil: Located on the high-voltage side, the primary coil consists of many turns of insulated conductor wound on one side of the iron core. It receives the input current and generates a time-varying magnetic field in the core.

  • Secondary Coil: Positioned on the low-voltage side, the secondary coil has fewer turns of insulated conductor wound on the other side of the core. It captures the changing magnetic flux and delivers the transformed (stepped-up or stepped-down) voltage at the output.

Principle of Voltage Transformation

Voltage transformation in a transformer is governed by Faraday’s law of electromagnetic induction and Lenz’s law.

  • Primary Coil: When alternating current flows through the primary coil, it produces a continuously changing magnetic field in the iron core. This varying flux is essential for inducing voltage in the secondary coil.

  • Secondary Coil: The changing magnetic flux from the primary induces an electromotive force (EMF) in the secondary coil according to Faraday’s law. This induced EMF drives current through the load connected to the output, delivering the transformed electrical energy.

Turns Ratio and Voltage Transformation Ratio

The voltage transformation ratio is directly determined by the turns ratio between the primary and secondary coils. According to electromagnetic induction theory, the induced EMF in each coil is proportional to its number of turns.

  • In a step-up transformer, the secondary coil has more turns than the primary, resulting in a higher output voltage.
  • In a step-down transformer, the secondary coil has fewer turns than the primary, yielding a lower output voltage.

The turns ratio is precisely designed to meet specific voltage conversion requirements. Thus, the relationship between the number of turns and the voltage ratio is fundamental to the transformer’s operation, defining its performance and application.

Rockwell

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

Fault Analysis and Treatment of Oil-Immersed Transformers
Fault Analysis and Treatment of Oil-Immersed Transformers
Oil Leakage at Welded JointsOil leakage at welded joints primarily stems from poor welding quality, such as incomplete or detached welds, and defects like pinholes and gas pores. Although oil-immersed transformers are initially coated with solder and paint during manufacturing, potentially masking these issues temporarily, the defects tend to surface during operation. Additionally, electromagnetic vibration can cause weld cracks, leading to oil leakage.To resolve such leaks, the first critical s
08/29/2025
What losses occur during operation of the transformer? How to reduce losses?
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Cable Fault Detection, Testing, Location and Repair
Cable Fault Detection, Testing, Location and Repair
I. Methods for Cable Testing and Inspection:Insulation Resistance Test: Use an insulation resistance tester to measure the insulation resistance value of the cable. A high insulation resistance value indicates good insulation, while a low value may suggest insulation problems requiring further investigation.Voltage Withstand Test: Apply a high-voltage test using a high-voltage tester to verify whether the cable can withstand high voltage under its rated operating conditions. Under normal circums
08/29/2025
Cable Quality Inspection and Cable Detection & Testing
Cable Quality Inspection and Cable Detection & Testing
Power cable quality inspection and cable testing are conducted to ensure that the cable's quality and performance meet specified requirements, thereby guaranteeing the safe and stable operation of power systems. Below are some common contents of power cable quality inspection and cable testing:Visual Inspection: Check the cable surface for physical defects such as damage, deformation, or scratches to ensure the cable's exterior is intact.Dimensional Measurement: Measure dimensional parameters su
08/29/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!