• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Understanding Transformer Primary and Secondary Coils: Structure and Function

Rockwell
Field: Manufacturing
China

The primary and secondary coils are two fundamental components of a transformer, enabling the transmission and transformation of electrical energy through the principle of electromagnetic induction. The primary coil receives high-voltage current from the input source and generates a varying magnetic field, while the secondary coil, influenced by this magnetic field, produces a corresponding output voltage. Their interaction allows the transformer to perform voltage conversion, facilitating efficient power transmission and distribution.

Position and Structure

In a transformer, both coils are typically wound around a common iron core to ensure effective magnetic coupling through electromagnetic induction. The primary coil is connected to the input side, and the secondary coil to the output side. They are electrically isolated from each other by insulation materials and the core structure, preventing direct current flow.

  • Primary Coil: Located on the high-voltage side, the primary coil consists of many turns of insulated conductor wound on one side of the iron core. It receives the input current and generates a time-varying magnetic field in the core.

  • Secondary Coil: Positioned on the low-voltage side, the secondary coil has fewer turns of insulated conductor wound on the other side of the core. It captures the changing magnetic flux and delivers the transformed (stepped-up or stepped-down) voltage at the output.

Principle of Voltage Transformation

Voltage transformation in a transformer is governed by Faraday’s law of electromagnetic induction and Lenz’s law.

  • Primary Coil: When alternating current flows through the primary coil, it produces a continuously changing magnetic field in the iron core. This varying flux is essential for inducing voltage in the secondary coil.

  • Secondary Coil: The changing magnetic flux from the primary induces an electromotive force (EMF) in the secondary coil according to Faraday’s law. This induced EMF drives current through the load connected to the output, delivering the transformed electrical energy.

Turns Ratio and Voltage Transformation Ratio

The voltage transformation ratio is directly determined by the turns ratio between the primary and secondary coils. According to electromagnetic induction theory, the induced EMF in each coil is proportional to its number of turns.

  • In a step-up transformer, the secondary coil has more turns than the primary, resulting in a higher output voltage.

  • In a step-down transformer, the secondary coil has fewer turns than the primary, yielding a lower output voltage.

The turns ratio is precisely designed to meet specific voltage conversion requirements. Thus, the relationship between the number of turns and the voltage ratio is fundamental to the transformer’s operation, defining its performance and application.

Give a tip and encourage the author!
Recommended
Chinese Grid Technology Reduces Egyptian Power Distribution Losses
Chinese Grid Technology Reduces Egyptian Power Distribution Losses
On December 2nd, the South Cairo distribution network loss reduction pilot project in Egypt, led and implemented by a Chinese power grid company, officially passed the acceptance inspection by the South Cairo Electricity Distribution Company of Egypt. The comprehensive line loss rate in the pilot area decreased from 17.6% to 6%, achieving an average daily reduction of lost electricity of approximately 15,000 kilowatt-hours. This project is the first overseas distribution network loss reduction p
Baker
12/10/2025
Why does a 2-in 4-out 10 kV solid-insulated ring main unit have two incoming feeder cabinets?
Why does a 2-in 4-out 10 kV solid-insulated ring main unit have two incoming feeder cabinets?
A "2-in 4-out 10 kVsolid-insulated ring main unit" refers to a specific type of ring main unit (RMU). The term "2-in 4-out" indicates that this RMU has two incoming feeders and four outgoing feeders.10 kVsolid-insulated ring main unit are equipment used in medium-voltage power distribution systems, primarily installed in substations, distribution stations, and transformer stations to distribute high-voltage power to low-voltage distribution networks. They generally consist of high-voltage incomi
Garca
12/10/2025
What Is a Magnetic Levitation Transformer? Uses & Future
What Is a Magnetic Levitation Transformer? Uses & Future
In today’s rapidly advancing technological era, the efficient transmission and conversion of electric power have become continuous goals pursued across various industries. Magnetic levitation transformers, as an emerging type of electrical equipment, are gradually demonstrating their unique advantages and broad application potential. This article will thoroughly explore the application fields of magnetic levitation transformers, analyze their technical characteristics and future development tren
Baker
12/09/2025
How Often Should Transformers Be Overhauled?
How Often Should Transformers Be Overhauled?
1. Transformer Major Overhaul Cycle The main transformer shall undergo a core-lifting inspection before being put into service, and thereafter a core-lifting overhaul shall be performed every 5 to 10 years. Core-lifting overhaul shall also be carried out if a fault occurs during operation or if issues are identified during preventive tests. Distribution transformers operating continuously under normal load conditions may be overhauled once every 10 years. For on-load tap-changing transformers, t
Felix Spark
12/09/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.