• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Resistance and Leakage Reactance or Impedance of Transformer

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

image.png

Leakage Reactance of Transformer

All the flux in transformer will not be able to link with both the primary and secondary windings. A small portion of flux will link either winding but not both. This portion of flux is called leakage flux. Due to this leakage flux in transformer, there will be a self-reactance in the concerned winding.

This self-reactance of transformer is alternatively known as leakage reactance of transformer. This self-reactance associated with resistance of transformer is impedance. Due to this impedance of transformer, there will be voltage drops in both primary and secondary transformer windings.

Resistance of Transformer

Generally, both primary and secondary windings of electrical power transformer are made of copper. Copper is a very good conductor of current but not a super conductor. Actually, super conductor and super conductivity both are conceptual, practically they are not available. So both windings will have some resistance. This internal resistance of both primary and secondary windings is collectively known as resistance of transformer.

Impedance of Transformer

As we said, both primary and secondary windings will have resistance and leakage reactance. These resistance and reactance will be in combination, is nothing but impedance of transformer. If R1 and R2 and X1 and X2 are primary and secondary resistance and leakage reactance of transformer respectively, then Z1 and Z2 impedance of primary and secondary windings are respectively,

image.png

The Impedance of transformer plays a vital role during parallel operation of transformer.

Leakage Flux in Transformer

In ideal transformer, all the flux will link with both primary and secondary windings but in reality, it is impossible to link all the flux in transformer with both primary and secondary windings. Although maximum flux will link with both windings through the core of transformer but still there will be a small amount of flux which will link either winding but not both. This flux is called leakage flux which will pass through the winding insulation and transformer insulating oil instead of passing through core. Due to this leakage flux in transformer, both primary and secondary windings have leakage reactance. The reactance of transformer is nothing but leakage reactance of transformer. This phenomenon in transformer is known as Magnetic leakage.

image.png

Voltage drops in the windings occur due to impedance of transformer. Impedance is combination of resistance and leakage reactance of transformer. If we apply voltage V1 across primary of transformer, there will be a component I1X1 to balance primary self induced emf due to primary leakage reactance. (Here, X1 is primary leakage reactance). Now if we also consider voltage drop due to primary resistance of transformer, then voltage equation of a transformer can easily be written as,

image.png

Similarly for secondary leakage reactance, the voltage equation of secondary side is,

image.png

Here in the figure above, the primary and secondary windings are shown in separate limbs, and this arrangement could result in a large leakage flux in transformer because there is a big room for leakage. Leakage in primary and secondary windings could be eliminated if the windings could be made to occupy the same space. This, of course, is physically impossible but, by placing secondary and primary in a concentric manner can solve the problem to a good extent.


Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
What causes a transformer to be noisier under no-load conditions?
What causes a transformer to be noisier under no-load conditions?
When a transformer is operating under no-load conditions, it often produces louder noise than under full load. The primary reason is that, with no load on the secondary winding, the primary voltage tends to be slightly higher than nominal. For example, while the rated voltage is typically 10 kV, the actual no-load voltage may reach around 10.5 kV.This elevated voltage increases the magnetic flux density (B) in the core. According to the formula:B = 45 × Et / S(where Et is the designed volts-per-
Noah
11/05/2025
Under what circumstances should an arc suppression coil be taken out of service when it is installed?
Under what circumstances should an arc suppression coil be taken out of service when it is installed?
When installing an arc suppression coil, it is important to identify the conditions under which the coil should be taken out of service. The arc suppression coil should be disconnected under the following circumstances: When a transformer is being de-energized, the neutral-point disconnector must be opened first before performing any switching operations on the transformer. The energizing sequence is the reverse: the neutral-point disconnector should be closed only after the transformer is energ
Echo
11/05/2025
What fire prevention measures are available for power transformer failures?
What fire prevention measures are available for power transformer failures?
Failures in power transformers are commonly caused by severe overload operation, short circuits due to winding insulation degradation, aging of transformer oil, excessive contact resistance at connections or tap changers, failure of high- or low-voltage fuses to operate during external short circuits, core damage, internal arcing in oil, and lightning strikes.Since transformers are filled with insulating oil, fires can have severe consequences—ranging from oil spraying and ignition to, in extrem
Noah
11/05/2025
What are the common faults encountered during the operation of power transformer longitudinal differential protection?
What are the common faults encountered during the operation of power transformer longitudinal differential protection?
Transformer Longitudinal Differential Protection: Common Issues and SolutionsTransformer longitudinal differential protection is the most complex among all component differential protections. Misoperations occasionally occur during operation. According to 1997 statistics from the North China Power Grid for transformers rated 220 kV and above, there were 18 incorrect operations in total, of which 5 were due to longitudinal differential protection—accounting for approximately one-third. Causes of
Felix Spark
11/05/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.