• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


The difference between charging and discharging capacitors with alternating current

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

Capacitors behave differently in AC circuits than they do in DC circuits. Capacitors in an AC circuit can be viewed as constantly charging and discharging because the voltage of an AC power supply changes periodically.


Behavior of capacitors in AC circuits


  • Equivalent to short circuit: In a high-frequency AC circuit, a capacitor behaves like a short circuit because its impedance (capacitive reactance) is very low.


  • Equivalent to open circuit: In low-frequency AC circuits, capacitors have a higher capacitive reactance and behave like open circuits.


Charging process


Current direction


When the capacitor is connected to the AC power supply to start charging, in the positive half of the AC power supply, the current flows from the positive terminal of the power supply to the positive plate of the capacitor, so that the positive plate of the capacitor is positively charged and the negative plate is negatively charged. In the negative half of the AC power supply, the current is in the opposite direction, flowing out of the positive plate of the capacitor and back to the negative electrode of the power supply, while the negative plate of the capacitor is positively charged and the positive plate is negatively charged.


Charging time


Since the voltage of the AC power supply is constantly changing, the charging time of the capacitor depends on the frequency of the AC power supply and the capacitance value of the capacitor. During a cycle of the AC power supply, the capacitor will be charged at different times. When the power supply voltage rises, the charging speed of the capacitor is faster. When the power supply voltage drops, the capacitor charge rate slows down and may even begin to discharge.


Charging energy


The energy stored by a capacitor during charging is proportional to the square of the supply voltage and the capacitance value of the capacitor. When the voltage of the AC power supply increases, the energy stored by the capacitor increases. When the voltage drops, less energy is stored.


Discharge process


Current direction


When the capacitor is fully charged, if disconnected from the AC power supply, the capacitor will discharge through the load. When discharging, the current flows out of the positive plate of the capacitor and returns to the negative plate through the load, in the opposite direction as when charging.


Discharge time


The discharge time of the capacitor depends on the capacitance value of the capacitor and the resistance value of the load. τ=RC According to the time constant (where R is the load resistance and C is the capacitance value), the discharge time is proportional to the time constant. The larger the capacitance value and the larger the load resistance, the longer the discharge time.


Discharge energy


The capacitor releases the stored energy during the discharge process, and as the discharge proceeds, the voltage at both ends of the capacitor gradually decreases, the discharge current also gradually decreases, and the energy released is less and less.


Overall distinction


Change of direction


When charging, the current direction changes periodically with the change of AC power supply, while when discharging, the current direction flows from the capacitor to the load, and the direction is relatively fixed.


Time characteristic


The charge time depends on the frequency of the AC power supply and the characteristics of the capacitor, while the discharge time depends on the parameters of the capacitor and the load.


Energy change


The capacitor stores energy when charging, and the energy changes with the power supply voltage; When discharging, the capacitor releases energy, which gradually decreases.


Give a tip and encourage the author!
Recommended
Low-Voltage Distribution Lines and Power Distribution Requirements for Construction Sites
Low-Voltage Distribution Lines and Power Distribution Requirements for Construction Sites
Low-voltage distribution lines refer to the circuits that, through a distribution transformer, step down the high voltage of 10 kV to the 380/220 V level—i.e., the low-voltage lines running from the substation to the end-use equipment.Low-voltage distribution lines should be considered during the design phase of substation wiring configurations. In factories, for workshops with relatively high power demand, dedicated workshop substations are often installed, where transformers supply power direc
James
12/09/2025
Three-Phase SPD: Types, Wiring & Maintenance Guide
Three-Phase SPD: Types, Wiring & Maintenance Guide
1. What Is a Three-Phase Power Surge Protective Device (SPD)?A three-phase power surge protective device (SPD), also known as a three-phase lightning arrester, is specifically designed for three-phase AC power systems. Its primary function is to limit transient overvoltages caused by lightning strikes or switching operations in the power grid, thereby protecting downstream electrical equipment from damage. The SPD operates based on energy absorption and dissipation: when an overvoltage event occ
James
12/02/2025
Railway 10kV Power Through Lines: Design & Operation Requirements
Railway 10kV Power Through Lines: Design & Operation Requirements
The Daquan Line has a large power load, with numerous and scattered load points along the section. Each load point has a small capacity, with an average of one load point every 2-3 km, so two 10 kV power through lines should be adopted for power supply. High-speed railways use two lines for power supply: primary through line and comprehensive through line. The power sources of the two through lines are taken from the dedicated bus sections fed by the voltage regulators installed in each power di
Edwiin
11/26/2025
Neutral Grounding Methods for Conventional-Speed Railway Power Systems
Neutral Grounding Methods for Conventional-Speed Railway Power Systems
Railway power systems primarily consist of automatic block signaling lines, through-feeder power lines, railway substations and distribution stations, and incoming power supply lines. They provide electricity to critical railway operations—including signaling, communications, rolling stock systems, station passenger handling, and maintenance facilities. As an integral part of the national power grid, railway power systems exhibit distinct characteristics of both electrical power engineering and
Echo
11/26/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.