• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Zero Power Factor Characteristic (ZPFC)

Encyclopedia
Field: Encyclopedia
0
China

The Zero Power Factor Characteristic (ZPFC) of a generator represents a curve that illustrates the relationship between the armature terminal voltage and the field current. In this test, the generator operates at synchronous speed with a constant rated armature current and a zero lagging power factor. The Zero Power Factor Characteristic is also known as the Potier Characteristic.

To maintain a very low power factor, the alternator is loaded using reactors or an under - excited synchronous motor. The shape of the ZPFC closely resembles that of the Open Circuit Characteristic (O.C.C.).

The phasor diagram corresponding to a zero power factor lagging condition is presented as follows:

image.png

In the phasor diagram depicted above, the terminal voltage V serves as the reference phasor. Under the condition of zero power factor lagging, the armature current Ia lags behind the terminal voltage V by exactly 90 degrees. The voltage drop Ia Ra (where Ra is the armature resistance) is drawn parallel to the armature current Ia, while Ia XaL (with XaL being the armature leakage reactance) is plotted perpendicular to Ia.

image.png

Eg is the generated voltage per phase.

The phasor diagram at ZPF lagging with the armature resistance Ra neglected is shown below:

image.png

Far represents the armature reaction magnetomotive force (MMF). It is in phase with the armature current Ia, meaning their phase relationship is such that they vary simultaneously.

Ff denotes the MMF of the main field winding, commonly referred to as the field MMF. This is the magnetic - driving force generated by the field winding of the generator.Frstands for the resultant MMF, which is the combined effect of the armature reaction MMF and the field MMF within the machine's magnetic circuit.

The field MMF Ff is calculated by subtracting the armature reaction MMF Far from the resultant MMF Fr. Mathematically, this relationship is expressed as

image.png

As can be observed from the aforementioned phasor diagram, the terminal voltage V, the reactance voltage drop Ia XaL}, and the generated voltage Eg all exhibit the same phase. Consequently, the terminal voltage V is approximately equal to the arithmetic difference between the generated voltage Eg and the reactance voltage drop Ia XaL.

image.png

The three MMF phasor Ff, Fr and Far are in phase. Their magnitudes are related by the equation shown below:

image.png

The two equations mentioned above, namely equation (1) and equation (2), serve as the fundamental building blocks for the Potier triangle.When both sides of equation (2) are divided by Tf - where Tf represents the effective number of turns per pole on the rotor field - the equation can be transformed into its equivalent form in terms of field current. As a result,

image.png

Based on the above - derived equation, the field current can be obtained by summing up the resultant current and the armature reaction current.


Give a tip and encourage the author!

Recommended

Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
01/29/2026
Understanding Transformer Neutral Grounding
I. What is a Neutral Point?In transformers and generators, the neutral point is a specific point in the winding where the absolute voltage between this point and each external terminal is equal. In the diagram below, pointOrepresents the neutral point.II. Why Does the Neutral Point Need Grounding?The electrical connection method between the neutral point and earth in a three-phase AC power system is called theneutral grounding method. This grounding method directly affects:The safety, reliabilit
01/29/2026
Voltage Imbalance: Ground Fault, Open Line, or Resonance?
Single-phase grounding, line break (open-phase), and resonance can all cause three-phase voltage unbalance. Correctly distinguishing among them is essential for rapid troubleshooting.Single-Phase GroundingAlthough single-phase grounding causes three-phase voltage unbalance, the line-to-line voltage magnitude remains unchanged. It can be classified into two types: metallic grounding and non-metallic grounding. Inmetallic grounding, the faulted phase voltage drops to zero, while the other two phas
11/08/2025
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic (PV) Power Generation SystemsA photovoltaic (PV) power generation system is primarily composed of PV modules, a controller, an inverter, batteries, and other accessories (batteries are not required for grid-connected systems). Based on whether it relies on the public power grid, PV systems are divided into off-grid and grid-connected types. Off-grid systems operate independently without relying on the utility grid. They are equipped with energy-s
10/09/2025
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.