What is Electrical Power System?

Encyclopedia
08/30/2024


What is Electrical Power System?


Power System Definition


An electric power system is a network designed to efficiently generate, transmit, and distribute electricity to consumers.


 

8c7963ac16999730d566de3fe9a628e0.jpeg


An electric power system is defined as a network of electrical components used to supply, transfer, and consume electric power. The supply is done through some form of generation (e.g. a power plant), the transfer is done through a transmission (via a transmission line) and distribution system, and the consumption can be through residential applications such as powering the lights or air conditioning in your home, or via industrial applications such as the operation of large motors.

 


An example of a power system is the electrical grid that provides power to homes and industry within an extended area. The electrical grid can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centers to the load centers, and the distribution system that feeds the power to nearby homes and industries.


 

Smaller power systems are also found in industry, hospitals, commercial buildings, and homes. The majority of these systems rely upon three-phase AC power—the standard for large-scale power transmission and distribution across the modern world.

 


Specialized power systems that do not always rely upon three-phase AC power are found in aircraft, electric rail systems, ocean liners, submarines, and automobiles.

 


The generation plants produce electrical energy at a low voltage level. We keep the generation voltage at a low level because it has some specific advantages. Low voltage generation creates fewer stresses on the armature of the alternator. Hence at low voltage generation, we can construct a smaller alternator with thinner and lighter insulation.

 


From an engineering and design point of view, smaller alternators are more practical. We can not transmit this low voltage power to the load centers.

 


Low voltage transmission causes more copper loss, poor voltage regulations, and more installation costs of the transmission system. To avoid these three difficulties we have to step up the voltage to a specific high voltage level.

 


Raising the system voltage beyond a certain point is impractical as it significantly increases insulation costs and the expenses for supporting structures due to required ground clearance.

 


The transmission voltage depends on the quantity of power to be transmitted. The surge impedance loading is another parameter which determines the voltage level of the system for transmitting an amount of energy.

 


For stepping up system voltage, we use step-up transformers and their associated protections and operations arrangements at the generating station. We call this a generation substation. At the end of the transmission line, we have to step down the transmission voltage to a lower level for secondary transmission and or distribution purposes.

 


Here we use step down transformers and their associated protection and operational arrangements. This is a transmission substation. After primary transmission, the electrical energy passes through secondary transmission or primary distribution. After secondary transmission or primary distribution again we step down the voltage to a desired low voltage level to distribute at the consumer premises.

 


This was the basic structure of an electrical power system. Although, we have not mentioned the details of each piece of equipment used in an electrical power system. In addition to three main components alternator, transformer, and transmission line there is a number of associated equipment.

 


Some of these pieces of equipment are circuit breaker, lightning arrestor, isolator, current transformer, voltage transformer, capacitor voltage transformer, wave trap, capacitor bank, relaying system, controlling arrangement, the earthing arrangement of the line and substation equipment, etc.

 


 

Voltage Regulation


Managing voltage levels through transformers is crucial for minimizing energy loss and ensuring safe, efficient power delivery.

 


Transmission Importance


High voltage transmission is necessary to reduce energy losses and infrastructure costs over long distances.

 


Essential Components


Key parts of a power system include generators, transformers, and a variety of protective and operational equipment.

 


Economic Rationale


Power systems are vital for delivering electricity from resource-rich generation sites to distant consumption areas, ensuring economic and reliable energy access


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Automatic Voltage Regulator?
What is Automatic Voltage Regulator?
An automatic voltage regulator is employed to regulate voltage, converting fluctuating voltages into a constant one. Voltage fluctuations mainly stem from variations in the load on the supply system. Such voltage variations can damage the equipment within the power system. These fluctuations can be mitigated by installing voltage - control equipment at various locations, such as near transformers, generators, and feeders. Multiple voltage regulators are often placed throughout the power system t
Edwiin
05/22/2025
What is Static Voltage Regulator?
What is Static Voltage Regulator?
Types of Static Voltage RegulatorThe static voltage regulator is superior to electromechanical regulators in respect of the accuracy of control, response, reliability and maintenance. The static voltage regulator is mainly classified into two types. They are;Servo Type Voltage RegulatorMagnetic Amplifier RegulatorThe types of static voltage regulator are described below in details;Servo Type Voltage RegulatorThe main feature of the servo type voltage regulator is the use of the amplidyne. The am
Edwiin
05/21/2025
What is Arc Extinction Circuit Breaker?
What is Arc Extinction Circuit Breaker?
When the current-carrying contacts of a circuit breaker separate, an arc forms and persists briefly after contact separation. This arc is hazardous due to the heat energy it generates, which can produce explosive forces.A circuit breaker must extinguish the arc without damaging equipment or endangering personnel. The arc significantly influences the breaker’s performance. Interrupting aDC arcis inherently more challenging than anAC arc. In an AC arc, the current naturally reaches zero duri
Edwiin
05/20/2025
Air Break Circuit Breaker
Air Break Circuit Breaker
In an air break circuit breaker, the arc is initiated and extinguished in substantially static air as the arc moves. These breakers are used for low voltages, generally up to 15 kV, with rupturing capacities of 500 MVA. As an arc-quenching medium, air circuit breakers offer several advantages over oil, including:Elimination of risks and maintenance associated with oil use.Absence of mechanical stress caused by gas pressure and oil movement.Elimination of costs from regular oil replacement due to
Edwiin
05/20/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!