• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Faradays Laws of Electrolysis – First and Second Laws (Equations & Definition)

Electrical4u
Field: Basic Electrical
0
China

Faraday’s Laws of Electrolysis

Before understanding Faraday’s laws of electrolysis, we must first understand the process of electrolysis of a metal sulfate.

Whenever an electrolyte like metal sulfate is diluted in water, its molecules split into positive and negative ions. The positive ions (or metal ions) move to the electrodes connected with the negative terminal of the battery where these positive ions take electrons from it, becoming a pure metal atom and getting deposited on the electrode.

The negative ions (or sulphions) move to the electrode connected with the positive terminal of the battery, where these negative ions give up their extra electrons and become SO4 radical. Since SO4 cannot exist in an electrically neutral state, it will attack the metallic positive electrode – forming a metallic sulfate which will again dissolve in the water.

Faraday’s laws of electrolysis are quantitative (mathematical) relationships that describe the above two phenomena.

Faraday’s First and Second Laws of Electrolysis

Faraday’s First Law of Electrolysis

From the brief explanation above, it is clear that the flow of current through the external battery circuit fully depends upon how many electrons get transferred from negative electrode or cathode to positive metallic ion or cations. If the cations have valency of two like Cu++ then for every cation, there would be two electrons transferred from cathode to cation. We know that every electron has negative electrical charge – 1.602 × 10-19 Coulombs and say it is – e. So for disposition of every Cu atom on the cathode, there would be – 2.e charge transfers from cathode to cation.

Now say for t time there would be total n number of copper atoms deposited on the cathode, so total charge transferred, would be – 2.n.e Coulombs. Mass m of the deposited copper is obviously a function of the number of atoms deposited. So, it can be concluded that the mass of the deposited copper is directly proportional to the quantity of electrical charge that passes through the electrolyte. Hence mass of deposited copper m ∝ Q quantity of electrical charge passes through the electrolyte.

Faraday’s First Law of Electrolysis states that the chemical deposition due to the flow of current through an electrolyte is directly proportional to the quantity of electricity (coulombs) passed through it.

i.e. mass of chemical deposition:

Where, Z is a constant of proportionality and is known as electro-chemical equivalent of the substance.

If we put Q = 1 coulombs in the above equation, we will get Z = m which implies that electrochemical equivalent of any substance is the amount of the substance deposited on the passing of 1 coulomb through its solution. This constant of the passing of electrochemical equivalent is generally expressed in terms of milligrams per coulomb or kilogram per coulomb.

Faraday’s Second Law of Electrolysis

So far we have learned that the mass of the chemical, deposited due to electrolysis is proportional to the quantity of electricity that passes through the electrolyte. The mass of the chemical, deposited due to electrolysis is not only proportional to the quantity of electricity passes through the electrolyte, but it also depends upon some other factor. Every substance will have its own atomic weight. So for the same number of atoms, different substances will have different masses.

Again, how many atoms deposited on the electrodes also depends upon their number of valency. If valency is more, then for the same amount of electricity, the number of deposited atoms will be less whereas if valency is less, then for the same quantity of electricity, more number of atoms to be deposited.

So, for the same quantity of electricity or charge passes through different electrolytes, the mass of deposited chemical is directly proportional to its atomic weight and inversely proportional to its valency.

Faraday’s second law of electrolysis states that, when the same quantity of electricity is passed through several electrolytes, the mass of the substances deposited are proportional to their respective chemical equivalent or equivalent weight.

Chemical Equivalent or Equivalent Weight

The chemical equivalent or equivalent weight of a substance can be determined by Faraday’s laws of electrolysis, and it is defined as the weight of that subtenancy which will combine with or displace the unit weight of hydrogen.

The chemical equivalent of hydrogen is, thus, unity. Since valency of a substance is equal to the number of hydrogen atoms, which it can replace or with which it can combine, the chemical equivalent of a substance, therefore may be defined as the ratio of its atomic weight to its valency.

Who Invented Faraday’s Laws of Electrolysis?

Faraday’s Laws of Electrolysis were published by Michael Faraday in 1834. Michael Faraday was also responsible

Michael Faraday
Michael Faraday

As well as discovering these laws of electrolysis, Michael Faraday is also responsible for popularizing terminologies such as electrodes, ions, anodes, and cathodes.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
Difference Between Electromagnet and Permanent Magnet
Electromagnets vs. Permanent Magnets: Understanding the Key DifferencesElectromagnets and permanent magnets are the two primary types of materials that exhibit magnetic properties. While both generate magnetic fields, they differ fundamentally in how these fields are produced.An electromagnet generates a magnetic field only when an electric current flows through it. In contrast, a permanent magnet inherently produces its own persistent magnetic field once it has been magnetized, without requirin
Edwiin
08/26/2025
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
What is a Pure Resistive AC Circuit?
Pure Resistive AC CircuitA circuit containing only a pure resistanceR(in ohms) in an AC system is defined as a Pure Resistive AC Circuit, devoid of inductance and capacitance. Alternating current and voltage in such a circuit oscillate bidirectionally, generating a sine wave (sinusoidal waveform). In this configuration, power is dissipated by the resistor, with voltage and current in perfect phase—both reaching their peak values simultaneously. As a passive component, the resistor neither
Edwiin
06/02/2025
What is a Pure Capacitor Circuit?
Pure Capacitor CircuitA circuit comprising only a pure capacitor with capacitanceC(measured in farads) is termed a Pure Capacitor Circuit. Capacitors store electrical energy within an electric field, a characteristic known ascapacitance(alternatively referred to as a "condenser"). Structurally, a capacitor consists of two conductive plates separated by a dielectric medium—common dielectric materials include glass, paper, mica, and oxide layers. In an ideal AC capacitor circuit, the current
Edwiin
06/02/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.