What is a Pure Capacitor Circuit?

06/02/2025

Pure Capacitor Circuit
A circuit comprising only a pure capacitor with capacitance C (measured in farads) is termed a Pure Capacitor Circuit. Capacitors store electrical energy within an electric field, a characteristic known as capacitance (alternatively referred to as a "condenser"). Structurally, a capacitor consists of two conductive plates separated by a dielectric medium—common dielectric materials include glass, paper, mica, and oxide layers. In an ideal AC capacitor circuit, the current leads the voltage by a phase angle of 90 degrees.
When voltage is applied across a capacitor, an electric field is established between its plates, but no current traverses the dielectric. With a fluctuating AC voltage source, continuous current flow occurs due to the capacitor’s cyclic charging and discharging processes.
Explanation and Derivation of Capacitor Circuit
A capacitor comprises two insulated plates separated by a dielectric medium, serving as an energy storage device for electrical charge. It charges when connected to a power source and discharges when disconnected. When linked to a DC supply, it charges to a voltage equal to the applied potential, exemplifying its role as a passive electrical component that resists changes in voltage.
Let the alternating voltage applied to the circuit is given by the equation:
Charge of the capacitor at any instant of time is given as:
Current flowing through the circuit is given by the equation:
Putting the value of q from the equation (2) in equation (3) we will get
Now, putting the value of v from the equation (1) in the equation (3) we will get
Where Xc = 1/ωC denotes the opposition to alternating current flow by a pure capacitor, known as capacitive reactance.The current reaches its maximum value when sin(ωt + π/2) = 1.Thus, the maximum current Im is expressed as:
Substituting the value of Im in the equation (4) we will get:
Phasor Diagram and Power Curve
In a pure capacitor circuit, the current through the capacitor leads the voltage by a 90-degree phase angle. The phasor diagram and waveforms for voltage, current, and power are illustrated below:
In the waveform above, the red curve represents the current, the blue curve denotes the voltage, and the pink curve indicates the power. When the voltage increases, the capacitor charges to its maximum value, forming a positive half-cycle; as the voltage decreases, the capacitor discharges, creating a negative half-cycle. A careful examination of the curve reveals that when the voltage reaches its peak, the current drops to zero, meaning no current flows at that instant. As the voltage decreases to π and turns negative, the current peaks, triggering the capacitor to discharge—and this charging-discharging cycle continues.
Voltage and current never reach their maxima simultaneously due to their 90° phase difference, as shown in the phasor diagram where the current (Im) leads the voltage (Vm) by π/2. The instantaneous power in this pure capacitor circuit is defined by p = vi.
Thus, it can be deduced from the above equation that the average power in a capacitive circuit is zero. The average power over a half-cycle equals zero due to the symmetry of the waveform, where the positive and negative loop areas are identical.
During the first quarter-cycle, power supplied by the source is stored within the electric field established between the capacitor plates. In the subsequent quarter-cycle, as the electric field dissipates, the stored energy is returned to the source. This cyclic process of energy storage and return occurs continuously, resulting in no net power consumption by the capacitor circuit.

Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.

Difference Between Short Circuit & Overload
Difference Between Short Circuit & Overload
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
08/28/2025
Difference Between Leading and Lagging Power Factor
Difference Between Leading and Lagging Power Factor
Leading and lagging power factors are two key concepts related to the power factor in AC electrical systems. The main difference lies in the phase relationship between current and voltage: in a leading power factor, the current leads the voltage, whereas in a lagging power factor, the current lags behind the voltage. This behavior depends on the nature of the load in the circuit.What is Power Factor?Power factor is a crucial, dimensionless parameter in AC electrical systems, applicable to both s
08/26/2025
Difference Between Electromagnet and Permanent Magnet
Difference Between Electromagnet and Permanent Magnet
Electromagnets vs. Permanent Magnets: Understanding the Key DifferencesElectromagnets and permanent magnets are the two primary types of materials that exhibit magnetic properties. While both generate magnetic fields, they differ fundamentally in how these fields are produced.An electromagnet generates a magnetic field only when an electric current flows through it. In contrast, a permanent magnet inherently produces its own persistent magnetic field once it has been magnetized, without requirin
08/26/2025
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
The power outage and work scopes must be clearly inspectedCollaborate with the site survey leader to confirm the equipment to be maintained and the work area involved. Consider requirements such as the use of special vehicles and large machinery, and safe distances from adjacent energized equipment. Verify on-site whether the proposed power outage scope is sufficient to meet the operational needs.On-site safety measures must be clearly inspectedCollaborate with the site survey leader to verify s
Vziman
08/14/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!