• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Capacitive Current Estimation for Overhead and Cable Power Lines

Leon
Leon
Field: Fault Diagnosis
China

The capacitive current is mainly determined by the length of the feeder, the cross-sectional area of the conductor, the dielectric constant, the height above the ground, and the rated voltage. The specific estimation methods are as follows:

  • Estimation of capacitive current of overhead lines: For overhead lines of 3 - 35 kV, the capacitance per phase to ground is usually 5000 - 6000 pF/km. Based on this, the value of the single-phase grounding capacitive current per kilometer for lines of different voltage levels can be estimated.

  • Estimation of capacitive current of cable lines: The capacitive current of cable lines is much larger than that of overhead lines and needs to be calculated separately. Its value is closely related to the cross-sectional area, structure, and rated voltage of the cable.

  • Estimation of capacitive current of double-circuit overhead lines on the same pole: The capacitive current of such lines is not twice that of a single-circuit line. When equivalently calculated as a single-circuit line, the formula is: Ic = (1.4 - 1.6)Id (where Id is the capacitive current corresponding to the length of a single circuit in the double-circuit lines). The constant values need to be distinguished by voltage level: 1.4 corresponds to 10 kV lines, and 1.6 corresponds to 35 kV lines.

Give a tip and encourage the author!
Recommended
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic (PV) Power Generation SystemsA photovoltaic (PV) power generation system is primarily composed of PV modules, a controller, an inverter, batteries, and other accessories (batteries are not required for grid-connected systems). Based on whether it relies on the public power grid, PV systems are divided into off-grid and grid-connected types. Off-grid systems operate independently without relying on the utility grid. They are equipped with energy-s
Encyclopedia
10/09/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
1. On a scorching sunny day, do damaged vulnerable components need to be replaced immediately?Immediate replacement is not recommended. If replacement is necessary, it is advisable to do so in the early morning or late afternoon. You should contact the power station’s operation and maintenance (O&M) personnel promptly, and have professional staff go to the site for replacement.2. To prevent photovoltaic (PV) modules from being hit by heavy objects, can wire mesh protective screens be install
Encyclopedia
09/06/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
1. What are the common faults of distributed photovoltaic (PV) power generation systems? What typical problems may occur in various components of the system?Common faults include inverters failing to operate or start due to voltage not reaching the startup set value, and low power generation caused by issues with PV modules or inverters. Typical problems that may occur in system components are burnout of junction boxes and local burnout of PV modules.2. How to handle common faults of distributed
Leon
09/06/2025
Short Circuit vs. Overload: Understanding the Differences and How to Protect Your Power System
Short Circuit vs. Overload: Understanding the Differences and How to Protect Your Power System
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
Edwiin
08/28/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.