• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Integrated Optimization Solution for Power Plant Electrical Systems

Rockwill
17yrs 700++ staff 108000m²+m² US$150,000,000+ China

Ⅰ. Core Objectives

Enhance power generation efficiency, ensure power supply reliability, reduce full life-cycle operational costs, and achieve intelligent regulation of power systems.

Ⅱ. Core Subsystem Optimization Solutions

Dedicated Solution for Power Transformers
Pain Point Analysis: Transformers serve as the critical hub for power transmission, accounting for 3%~5% of total plant energy losses. Failure-induced downtime leads to complete plant power outages.

1. ​Transformer Selection & Technological Innovation

Optimization Direction

Implementation Strategy

Technical Benefits

Ultra-Efficient Transformers

Adopt ​SCRBH15-class or higher amorphous alloy transformers​ or ​Grade-1 energy-efficient oil-immersed transformers

40%~70% reduction in no-load loss, saving 100,000 kWh/year per unit

Impedance Optimization Design

Customize impedance values based on short-circuit current (±2% accuracy)

Suppresses short-circuit impact, enhances equipment safety

Intelligent Cooling System

Integrate VFD fans + oil pumps with coordinated control

50% power reduction at <60% load, noise ≤65dB

2. ​Key Performance Enhancement Path

graph LR

A[Electromagnetic Optimization] --> B[Stepped Lap Core]

A --> C[Epoxy Resin Vacuum Casting]

B --> D[15% Eddy Current Loss Reduction]

C --> E[Partial Discharge <5pC]

E --> F[Lifespan Extended to 40 Years]

3. ​Digital O&M System

  • Condition Sensing Layer
    • Embedded fiber-optic temperature sensors (±0.5°C accuracy)
    • Online DGA monitoring (H₂, C₂H₂ warning threshold ≤1ppm)
  • Intelligent Diagnostic Platform
    • IEEE C57.91 thermal aging model for lifespan prediction
    • Reinforcement learning algorithms for inter-turn fault localization (≥92% accuracy)

Ⅲ. System-Level Collaborative Optimization

Transformer-Subsystem Integration

Collaborative Module

Optimization Measure

Comprehensive Benefit

Generators

18-pulse rectifier transformer configuration

THD reduced from 8% → 2%

Switchgear

Transformer-GIS protection coordination time ≤15ms

Fault clearance speed ×3 faster

Load Management

±10% dynamic voltage regulation (OLTC)

Voltage compliance rate ≥99.99%

Ⅳ. Quantified Implementation Benefits

Metric

Pre-Optimization

Post-Optimization

Improvement

Comprehensive Efficiency

95.2%

98.1%

↑ 3.04%

Unplanned Outages

2.3 times/year

0.2 times/year

↓ 91.3%

Coal Consumption per kWh

285g/kWh

263g/kWh

↓ 7.7%

O&M Cost

18 USD/kVA/year

9.5 USD/kVA/year

↓ 47.2%

Note: Standard coal equivalent

Ⅴ. Key Technical Safeguards

  1. Life-Cycle Cost (LCC) Model
    • Procurement cost ratio: 75% → 45%, emphasizing 20-year O&M optimization
  2. Electro-Thermal-Mechanical Multi-physics Simulation​ (ANSYS Maxwell + Fluent)
    • Hotspot temperature error ≤3K, design margin reduced by 15%
08/05/2025
Recommended
Application of New DC Circuit Breakers in Short-Circuit Fault Protection
I. Introduction​With the rapid advancement of modern information technology, intelligence has become a major trend in the development of industrial equipment. In the field of high-voltage switching, intelligent circuit breakers—as critical control components in power systems—form the foundation for automation and intelligence in power systems. This study focuses on an intelligent DC circuit breaker based on single-chip microcomputer (SCM) technology, emphasizing its practical applica
Application Solutions of DC Circuit Breakers in the New Energy Sector
I. Overview​With the rapid development of new energy power generation and electric vehicle (EV) charging facilities, DC systems have imposed higher requirements for safety protection equipment. Traditional AC circuit breakers cannot effectively interrupt DC fault currents, creating an urgent need for specialized DC circuit breaker solutions. This solution provides professional protection configurations for two major application scenarios: photovoltaic (PV) power generation systems and EV chargin
Low-Cost, Low-Loss DC Arc-Free Circuit Breaker Solution for Rail Transit
I. Solution Overview​This solution addresses the protection needs of DC systems (particularly rail transit traction power supply) against short-circuit faults by proposing a DC circuit breaker solution based on optimized mechanical breaker structure. It achieves arc-free interruption through capacitor voltage control, combining low on-state loss and high reliability, making it suitable for frequent operation scenarios.​II. Core Principle​Utilizes a fast mechanical switch topology combined with p
PEBS Circuit Breaker DC Safety Solution
Solution Overview​In modern renewable energy power systems, such as photovoltaic (PV) power generation and energy storage systems, fault protection on the DC side is a core element for ensuring safe, stable, and efficient operation. The Projoy PEBS series DC miniature circuit breakers are specifically designed for such applications, providing a comprehensive and efficient solution integrating arc control, overload protection, and short-circuit protection. This solution aims to deliver the highes
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.