• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Smart Management and Maintenance Solution for Power Generation Transformers

Rockwill
17yrs 700++ staff 108000m²+m² US$150,000,000+ China

Ⅰ. Background and Pain Points
As power generation enterprises scale up and grid intelligence advances, traditional periodic maintenance models struggle to meet the O&M demands of large power transformers:
• ​Delayed Fault Response: Sudden insulation aging or overheating cannot be detected in real time
• ​High Maintenance Costs: Over-maintenance wastes resources, while insufficient maintenance causes unplanned downtime
• ​Fragmented Data Analysis: Isolated data from DGA (Dissolved Gas Analysis), partial discharge tests, etc., lack intelligent cross-diagnosis

II. System Architecture and Core Technologies
(1) Intelligent Sensing Layer
Deploys multi-dimensional IoT terminals:

graph LR 

A[Winding Fiber Optic Temp] --> D[Central Analytics Platform] 

B[DGA Sensor] --> D 

C[Vibration/Noise Monitor] --> D 

E[Core Grounding Current Detector] --> D 

(2) AI Analytics Engine

Module

Core Tech

Function

Condition Assessment

DBN (Deep Belief Network)

Integrates SCADA/online data to generate health indices

Fault Warning

LSTM Time-Series Analysis

Predicts hotspot trends based on temperature/load rates

Life Prediction

Weibull Distribution

Quantifies insulation paper degradation curves

(3) Predictive Maintenance Platform
• ​3D Dashboard: Real-time display of transformer load rates, hotspot temps, and risk levels
• ​Maintenance Decision Tree: Auto-generates work orders based on risk ratings
(e.g., C₂H₂>5μL/L & CO/CO₂>0.3 → Triggers bushing looseness inspection)

III. Core Functional Matrix

Function

Technical Implementation

O&M Value

Panoramic Monitoring

Edge-computing gateways (10ms data acquisition)

100% device status visualization

Smart Diagnostics

IEEE C57.104 + AI correction

92% fault identification accuracy

Predictive Maintenance

RUL prediction via degradation modeling

25% lower maintenance costs

Knowledge Retention

Self-iterating fault case database

60% faster new staff training

IV. Technical Highlights

  1. Multi-physics Coupling Analysis:
    EM-thermal-stress simulation data fed into AI models for early winding deformation alerts (±0.5mm precision)
  2. Blockchain Certification:
    O&M records and test data stored on-chain for ISO 55000 compliance
  3. AR-assisted Repair:
    Hololens overlays 3D fault-point positioning → 40% faster critical repairs

V. Application Results (1,000MW Plant Case)

Metric

Pre-upgrade

Post-upgrade

Improvement

Unplanned Outages

3.2/yr

0.4/yr

↓87.5%

Avg. Repair Time

72 hrs

45 hrs

↓37.5%

Life Prediction Error

±18 months

±6 months

↑67% accuracy

 

08/05/2025
Recommended
Application of New DC Circuit Breakers in Short-Circuit Fault Protection
I. Introduction​With the rapid advancement of modern information technology, intelligence has become a major trend in the development of industrial equipment. In the field of high-voltage switching, intelligent circuit breakers—as critical control components in power systems—form the foundation for automation and intelligence in power systems. This study focuses on an intelligent DC circuit breaker based on single-chip microcomputer (SCM) technology, emphasizing its practical applica
Application Solutions of DC Circuit Breakers in the New Energy Sector
I. Overview​With the rapid development of new energy power generation and electric vehicle (EV) charging facilities, DC systems have imposed higher requirements for safety protection equipment. Traditional AC circuit breakers cannot effectively interrupt DC fault currents, creating an urgent need for specialized DC circuit breaker solutions. This solution provides professional protection configurations for two major application scenarios: photovoltaic (PV) power generation systems and EV chargin
Low-Cost, Low-Loss DC Arc-Free Circuit Breaker Solution for Rail Transit
I. Solution Overview​This solution addresses the protection needs of DC systems (particularly rail transit traction power supply) against short-circuit faults by proposing a DC circuit breaker solution based on optimized mechanical breaker structure. It achieves arc-free interruption through capacitor voltage control, combining low on-state loss and high reliability, making it suitable for frequent operation scenarios.​II. Core Principle​Utilizes a fast mechanical switch topology combined with p
PEBS Circuit Breaker DC Safety Solution
Solution Overview​In modern renewable energy power systems, such as photovoltaic (PV) power generation and energy storage systems, fault protection on the DC side is a core element for ensuring safe, stable, and efficient operation. The Projoy PEBS series DC miniature circuit breakers are specifically designed for such applications, providing a comprehensive and efficient solution integrating arc control, overload protection, and short-circuit protection. This solution aims to deliver the highes
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.