• 15.5kV 27.7kV 38kV Solid dielectric single-triple-phase recloser
  • 15.5kV 27.7kV 38kV Solid dielectric single-triple-phase recloser
15.5kV 27.7kV 38kV Solid dielectric single-triple-phase recloser
discuss personally
Model
GridShield®-38-1250
GridShield®-38-1000
GridShield®-27.7-1250
GridShield®-27.7-1000
GridShield®-15.5-1250
GridShield®-15.5-1000
Basic info
Brand ABB
Model NO. 15.5kV 27.7kV 38kV Solid dielectric single-triple-phase recloser
Rated voltage 38kV
Rated normal current 1250A
Rated frequency 50/60Hz
Series GridShield®
Product Detail

Product Introduction

Solid dielectric vacuum recloser for smart grid applications up to 38kV

The ABB GridShield® recloser is a flexible solution that minimizes operation and maintenance costs through extensive research and testing for optimal outdoor performance. Integrating the ABB solution in the grid is quick and easy as it can be paired with a choice of controllers - ABB RER620,ABB RER615, SEL651R, Beckwith M-7679.

Highly reliable and technically adept, whether performing three- or single-phase tripping, the GridShield® recloser is ready for any challenge and geared to support the different needs of the distributed and smart grid of tomorrow. ABB reclosers are suitable for various applications, including feeder protection, loop control, etc. and allow full flexibility of use and superior results in fault detection isolation and restoration.

Technical parameters

The following table details the key technical specifications of the product, comprehensively covering electrical performance, mechanical characteristics, and dimensional parameters to provide a clear reference for technical selection and application scenarios.

Key features

The product offers multiple significant advantages, which can fully meet the diverse needs of industrial and power systems. Specifically included are:

  • Single-phase trip or three-phase tripping, available in a single tank or individual tanks for full installation and operation flexibility
  • Embedded dual voltage sensing for grid automation applications
  • Controller flexibility for installed base harmonization and training optimization
  • Rated at up to 38 kV, with unique 16 kA solid dielectric
  • High-impedance fault detection to be effective even in most difficult situations
  • Communication protocol flexibility: IEC 61850 native, Modbus and DNP or IEC 61850 and IEC 101/104
  • Site-ready units for quick and seamless installation and minimized time on site

Key benefits

  • Highest creep distance on the market ensures long-term performance in any environment
  • HCEP (Hydrophobic Cycloaliphatic Epoxy) is the best insulation for outdoor use, shedding water and debris, thus reducing the probability of flashovers even in heavily polluted areas
  • Simple, fast and safe maintenance as all the electronics are in the low-voltage range, eliminating the need for a bucket truck to isolate potentials to service electronics
  • Easy integration with multiple controller options, including the RER620,RER615, SEL-651R or Beckwith M-7679, to accommodate any grid modernization application
  • ABB made vacuum interrupters, accurate current and voltage sensors and magnetic actuators are state of the art technology and included in any ABB GridShield® recloser

 

Know your supplier
ABB
As an authorized distributor of ABB products, we take great pride in our partnership.
Main Categories
High voltage/Low voltage
Business Type
Sales
Highest Annual Export (USD)
$580000000
Professional Experience
11 years
Workplace
20000m²
占位
占位
Related Products
Related Knowledges
Analysis of Partial Discharge Principle (1)
Analysis of Partial Discharge Principle (1)
Analysis of Partial Discharge Principle (1)Under the action of an electric field, in an insulation system, discharge occurs only in some regions and does not penetrate between the conductors with the applied voltage. This phenomenon is called partial discharge. If partial discharge occurs near a conductor surrounded by gas, it can also be called corona.Partial discharge can occur not only at the edge of a conductor but also on the surface or inside an insulator. The discharge occurring on the su
Leon
07/19/2025
What types of FACTS controllers are there?
What types of FACTS controllers are there?
According to the type of connection FACTS Controller with the power system, it is classified as;Series Connected ControllerShunt Connected ControllerCombined Series-Series ControllerCombined Shunt-Series ControllerSeries-Connected ControllersSeries controllers introduce a voltage in series with the line voltage, typically using capacitive or inductive impedance devices. Their primary function is to supply or absorb variable reactive power as needed.When a transmission line is heavily loaded, the
Edwiin
07/19/2025
What are FACTS and related technologies?
What are FACTS and related technologies?
FACTS (Flexible Alternating Current Transmission System) refers to a power electronics-based system that uses static devices to enhance the power transfer capability and controllability of AC transmission networks.These power electronic devices are integrated into conventional AC grids to boost key performance metrics, including:Power transfer capacity of transmission linesVoltage stability and transient stabilityVoltage regulation precisionSystem reliabilityThermal limits of transmission infras
Edwiin
07/19/2025
What are the differences between HVAC and HVDC?
What are the differences between HVAC and HVDC?
Difference Between HVAC and HVDCElectricity generated in power plants is transmitted over long distances to electrical substations, which then distribute it to consumers. The voltage used for long-distance power transmission is extremely high, and we will explore the reasons for this high voltage later. Additionally, the transmitted power can be in either alternating current (AC) or direct current (DC) form. Therefore, power can be transmitted using either HVAC (High Voltage Alternating Current)
Edwiin
07/19/2025
What are the Advantages of HVDC over HVAC?
What are the Advantages of HVDC over HVAC?
What are the Advantages of HVDC over HVAC?Electricity travels long distances before reaching consumers. Power plants, often remote, supply electricity through hundreds of miles and multiple substations. High-voltage transmission reduces line losses, with both AC and DC used. Though AC is familiar via utility poles and home outlets, HVDC offers unique advantages in power transmission.The goal of power transmission is to minimize losses and costs. While both face influencing factors, HVDC has more
Edwiin
07/19/2025
Is the neutral - point grounding method of the power grid of 110kV and above only the neutral - point direct grounding method?
Is the neutral - point grounding method of the power grid of 110kV and above only the neutral - point direct grounding method?
Neutral - Point Grounding Modes and Protection of Transformers in Power GridsFor systems ranging from 110 kV to 500 kV, an effective grounding method shall be adopted. Specifically, under all operating conditions, the ratio of zero - sequence reactance to positive - sequence reactance X0/X1 of the system should be a positive value and not exceed 3. Meanwhile, the ratio of zero - sequence resistance to positive - sequence reactance R0/X1should also be a positive value and not exceed 1.In 330 kV a
Leon
07/19/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!