Research on Power Quality Issues and Control Technologies at Distribution Transformer Terminals in PV Charging Stations

Dyson
06/24/2025

1. Introduction
As a frontline designer of photovoltaic charging station distribution systems, I deeply engage in power quality control technology research. Amid energy transition, photovoltaic charging stations grow in importance, yet large - scale PV integration brings power quality challenges. The distribution transformer end, a key node, urgently needs solutions. Despite existing research, gaps remain in control tech considering PV characteristics and complex conditions. This paper focuses on this end’s power quality control, covering problem analysis, tech design, and case verification to support system stability.
2. Analysis of Power Quality Problems at the Distribution Transformer End
2.1 Operational Characteristics of Photovoltaic Charging Stations
Photovoltaic charging stations consist of PV power generation systems and charging facilities. PV systems convert solar energy via panels and inverters for grid connection. PV output is intermittent and fluctuating due to light intensity and temperature—weak in low - light conditions, higher in sunny noons; temperature also impacts panel efficiency.
Charging facilities have dynamically changing loads. User charging behavior is random, with varying times and power—e.g., post - work weekday surges or flexible scheduling, complicating load prediction. These are key design considerations.
2.2 Main Power Quality Problems
After grid connection, the distribution transformer end faces issues like voltage fluctuation/flicker, harmonics, and three - phase imbalance. Voltage fluctuation stems from PV intermittency and load changes, potentially causing flicker. Harmonics from inverters distort voltage, increasing losses and aging equipment. Unbalanced charging access causes three - phase imbalance, harming transformer life. These common inspection issues demand targeted solutions.
2.3 Causes of Power Quality Problems
Problems result from coupled factors: PV intermittency/volatility, load randomness, transformer nonlinearity (core saturation, winding leakage), and grid operation issues (uneven three - phase loads). Design must comprehensively address these for an appropriate control scheme.
3. Power Quality Control Technology for the Distribution Transformer End
3.1 Control Technology Based on Compensation Devices
Common compensation devices have distinct traits: reactive capacitors (simple but slow), SVC (dynamic but harmonic - prone), and STATCOM (fast, accurate, with harmonic suppression). During design, I optimize capacity and position (e.g., near transformer low - voltage side) for better efficiency.
3.2 Power Quality Optimization via Control Strategies
Advanced strategies enhance control: fuzzy control (handles nonlinear/uncertain issues), neural network (self - learning for precision), and model predictive control (optimizes via prediction). For voltage fluctuation, I designed a fuzzy - based regulation algorithm, proven by simulation to suppress fluctuations.
3.3 Comprehensive Control Scheme
The scheme integrates data acquisition, decision - making, and compensation modules. It forms a closed - loop: data identifies issues, matches strategies/devices, and adjusts parameters. I guide scheme design to fit charging station scenarios.
4. Analysis of Practical Application Cases
4.1 Case Introduction
A large industrial park photovoltaic charging station, with complex loads, faces severe power quality issues at the transformer end due to park load fluctuations and PV intermittency, affecting equipment and grid stability. I deeply participate in scheme implementation.
4.2 Application Scheme
Tailored compensation device selection and a cooperative fuzzy + model predictive control strategy are used. Fuzzy control generates initial compensation; model predictive control optimizes it. I ensure design fits on - site conditions.
4.3 Effect Evaluation
Post - application monitoring shows improved power quality: voltage fluctuation narrows to ±3%, THD drops below 4%, and three - phase unbalance to within 5%. Economically, annual maintenance costs reduce by ~¥200,000, with ~¥300,000 income growth. Socially, grid stability supports industrial park enterprises, verifying effectiveness.
5. Conclusion
The designed comprehensive control scheme, integrating compensation and strategies, effectively improves power quality. Yet, complex - condition control can be optimized. Future efforts will provide mature tech for photovoltaic charging station power quality management, ensuring grid stability.
Dyson

Focused on the design of electrical equipment, proficient in electrical principles and relevant specifications, and skilled in using design software. From intelligent substations to various types of electrical equipment, I am adept at optimizing design solutions, integrating new technologies. With practical experience and collaborative management capabilities, I deliver outstanding electrical design achievements.

Research on Low - Voltage Anti - DC Current Transformer and Detection Device
Research on Low - Voltage Anti - DC Current Transformer and Detection Device
1. Overview of Components and IssuesTA (low-voltage current transformer) and electric energy meters are key components of low-voltage electric energy metering. The load current of such meters is no less than 60A. Electric energy meters vary in type, model, and anti-DC performance, and are connected in series in the metering device. Due to the lack of anti-DC capability, they suffer from metering errors under DC component loads, usually caused by non-linear loads. With the increasing use of DC or
Dyson
07/16/2025
Anti - Theft Device for Low - Voltage Current Transformers
Anti - Theft Device for Low - Voltage Current Transformers
1. Innovation BackgroundWith the progress of society and economic development, the electricity demand of power users is expanding increasingly. Lawbreakers, aiming to save electricity costs and pursue high profits, gradually use high - tech methods to steal electricity, causing huge economic losses to power supply enterprises. Currently, popular electricity theft methods in the market include illegally opening the wiring cover of low - voltage transformers in electric energy metering boxes, alte
Dyson
07/16/2025
What aspects should be taken into consideration during the design of AIS voltage transformers?
What aspects should be taken into consideration during the design of AIS voltage transformers?
I. Key Elements of Mechanical Structure DesignThe mechanical structure design of AIS voltage transformers ensures long - term stable operation. For 66 kV outdoor AIS voltage transformers (pillar - type structure):Pillar Material: Use epoxy resin casting + metal frame for mechanical strength, pollution/weather resistance. Special design needed for 66 kV (vs 35 kV & below). Dry - type insulation (porcelain/epoxy shell) requires sufficient bending/impact resistance for harsh outdoors.Heat Dissi
Dyson
07/15/2025
Analysis of Gas Concentration in High - Voltage Reactors of Large - Scale Hydroelectric Generator Sets
Analysis of Gas Concentration in High - Voltage Reactors of Large - Scale Hydroelectric Generator Sets
1.Gas Generation and Analysis Principle of High - Voltage ReactorsHigh - voltage reactors use oil and insulating paper for insulation. Normal operation may see local overheating or discharges (e.g., iron core/winding issues, inter - turn short circuits), causing insulation cracking and producing gases like hydrocarbons (methane, etc.), CO, CO2, H2). These gases reflect internal insulation status, enabling real - time monitoring.For closed oil - filled reactors, insulation aging and oil oxidation
Oliver Watts
07/11/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!