• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Ammeter Shunt

Encyclopedia
Field: Encyclopedia
0
China

Definition:An ammeter shunt is a device that offers a low - resistance path for the flow of current. It is connected in parallel with the ammeter. In certain ammeters, the shunt is built - into the instrument, while in others, it is externally attached to the circuit.Reason for Connecting the Shunt in Parallel with the AmmeterAmmeters are designed to measure low currents. When it comes to measuring heavy currents, a shunt is connected in parallel with the ammeter.

Due to its low - resistance path, a substantial portion of the measured current (the current to be measured, denoted as I) flows through the shunt, and only a small amount of current passes through the ammeter.The shunt is connected in parallel with the ammeter so that the voltage drop across the ammeter and the shunt remains identical. As a result, the movement of the ammeter's pointer is not affected by the presence of the shunt.Calculation of Shunt ResistanceConsider a circuit used for measuring current I.

In this circuit, an ammeter and a shunt are connected in parallel. The ammeter is designed to measure a small current, say (Im). If the magnitude of the current I that needs to be measured is much larger than (Im), passing this large current through the ammeter would burn it. To measure the current I, a shunt is necessary in the circuit. The value of the shunt resistance (Rs) can be calculated using the following expression.

image.png

As the shunt connects in parallel with the ammeter, thus the same voltage drop occurs between them.

image.png

Therefore the equation of shunt resistance is given as,

12.jpg

The ratio of the total current to the current requires the movement of the ammeter coil is called the multiplying power of the shunt.

The multiplying power is given as, 

11.jpg

Construction of Shunt

The following are the key requirements for a shunt:

  • Resistance Stability: The resistance of the shunt should remain constant over time. This ensures consistent performance in accurately diverting the appropriate amount of current.

  • Thermal Stability: Even when a substantial current flows through the circuit, the temperature of the shunt material should not experience significant fluctuations. Maintaining a stable temperature is crucial as temperature variations can affect the resistance and thus the functionality of the shunt.

  • Temperature Coefficient Compatibility: Both the instrument and the shunt should have a low and identical temperature coefficient. The temperature coefficient describes the relationship between changes in the physical properties of the apparatus, such as resistance, and variations in temperature. By having a well - matched low temperature coefficient, the overall measurement accuracy remains stable across different temperature conditions.

In the construction of shunts, Manganin is commonly used for DC instruments, while Constantan is typically employed for AC instruments. These materials are selected due to their favorable electrical and thermal properties, which enable them to meet the stringent requirements for shunt operation in their respective current - type applications.

Give a tip and encourage the author!

Recommended

Classification of Equipment Defects for Relay Protection and Safety Automatic Devices in Substations
In daily operations, various equipment defects are inevitably encountered. Whether maintenance personnel, operation and maintenance staff, or specialized management personnel, all must understand the defect classification system and adopt appropriate measures according to different situations.According to Q/GDW 11024-2013 "Operation and Management Guide for Relay Protection and Safety Automatic Devices in Smart Substations," equipment defects are classified into three levels based on severity an
12/15/2025
Under What Conditions Will the Line Circuit Breaker Auto-Reclosing Signal Be Locked Out?
The line circuit breaker auto-reclosing signal will be locked out if any of the following conditions occur:(1) Low SF6 gas pressure in circuit breaker chamber at 0.5MPa(2) Insufficient energy storage in circuit breaker operating mechanism or low oil pressure at 30MPa(3) Busbar protection operation(4) Circuit breaker failure protection operation(5) Line distance protection zone II or zone III operation(6) Short lead protection operation of circuit breaker(7) Presence of remote tripping signal(8)
12/15/2025
Application of Auto-Reclosing Residual Current Protective Devices in Lightning Protection for Communication Power Supplies
1. Power Interruption Problems Caused by RCD False Tripping During Lightning StrikesA typical communication power supply circuit is shown in Figure 1. A residual current device (RCD) is installed at the power supply input terminal. The RCD primarily provides protection against electrical equipment leakage currents to ensure personal safety, while surge protective devices (SPDs) are installed on power supply branches to protect against lightning intrusions. When lightning strikes occur, the senso
12/15/2025
Reclosing Charge Time: Why Does Reclosing Require Charging? What Effects Does Charging Time Have?
1. Function and Significance of Reclosing ChargingReclosing is a protective measure in power systems. After faults such as short circuits or circuit overloads occur, the system isolates the faulty circuit and then restores normal operation through reclosing. The function of reclosing is to ensure continuous operation of the power system, improving its reliability and safety.Before performing reclosing, the circuit breaker must be charged. For high-voltage circuit breakers, the charging time is g
12/15/2025
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.