What is Overcurrent Relay?

Encyclopedia
04/16/2025

 What is Overcurrent Relay?

Definition

An overcurrent relay is defined as a relay that activates only when the current value exceeds the relay's set value. It safeguards the equipment in the power system from fault currents.

Classification Based on Operation Time

Based on the time it takes to operate, the overcurrent relay can be categorized into the following types:

  • Instantaneous Overcurrent Relay

  • Inverse Time Overcurrent Relay

  • Definite Time Overcurrent Relay

  • Inverse Definite Time Overcurrent Relay

  • Very Inverse Definite Time Overcurrent Relay

  • Extremely Inverse Definite Time Overcurrent Relay

Instantaneous Overcurrent Relay

The instantaneous overcurrent relay has no deliberately introduced time delay in its operation. When the current within the relay exceeds the operating value, its contacts close immediately. The time span between the moment the current reaches the pick - up value and the closing of the relay contacts is extremely short.

The most notable advantage of the instantaneous relay is its rapid operating time. It commences operation as soon as the current value surpasses the relay setting. This relay functions only when the impedance between the power source and the relay is lower than the impedance specified for the section.

The key feature of this relay is its operational speed. It protects the system from earth faults and is also utilized to protect the system from circulating currents. The instantaneous overcurrent relay is typically installed in the outgoing feeder.

Inverse - Time Overcurrent Relay

The inverse - time overcurrent relay operates when the magnitude of its operating current is inversely proportional to the magnitude of the energizing quantities. As the current increases, the operating time of the relay decreases, meaning its operation depends on the magnitude of the current.

The characteristic curve of this relay is presented in the figure below. The relay remains inactive when the current value is less than the pick - up value. It is employed for the protection of distribution lines. The inverse - time relay is further classified into three subtypes.

relay.jpegInverse Definite Minimum Time (IDMT) Relay

The Inverse Definite Minimum Time (IDMT) relay is a type of protective relay whose operating time is approximately inversely proportional to the magnitude of the fault current. The operating time of this relay can be adjusted by setting the time delay. The IDMT relay incorporates an electromagnetic core. This is because the electromagnetic core can readily saturate when the current magnitude exceeds the pick - up current. The IDMT relay is widely used for the protection of distribution lines. It strikes a balance between the speed of response and the selectivity required in such power distribution systems.

Very Inverse Relay

The very inverse relay exhibits an inverse time - current characteristic that is more pronounced than that of the IDMT relay. This type of relay finds applications in feeders and long - distance transmission lines. It is particularly useful in locations where the magnitude of the short - circuit current drops rapidly due to the significant distance from the power source. The very inverse relay is designed to sense fault currents regardless of the fault location. This makes it suitable for protecting long - line sections where the impedance varies along the line, and the fault current magnitude can be highly dependent on the distance from the source.

Extremely Inverse Relay

The extremely inverse relay has a time - current characteristic that shows an even more exaggerated inverse relationship compared to the IDMT and very inverse relays. This relay is commonly employed for protecting equipment such as cables and transformers. In situations where the pick - up value of the current exceeds the relay's setting, the extremely inverse relay can operate instantaneously. It provides fast operation even under fault current conditions, which is crucial for protecting equipment from severe over - currents. Additionally, it is often used to detect overheating in machines, as its characteristic can be tuned to respond quickly to abnormal current increases associated with overheating.

Inverse time relays, including the IDMT, very inverse, and extremely inverse relays, are extensively used in distribution networks and power plants. Their ability to provide rapid operation under fault conditions, owing to their unique fault - time characteristics, makes them an essential component in safeguarding power systems from various electrical faults.

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
With the increasing complexity of power system operation environment and the deepening of power system reform, traditional power grids are accelerating the transformation to smart grids. The goal of equipment condition-based maintenance is achieved through real-time perception of equipment status by new sensors, reliable communication via modern network technology, and effective monitoring by background expert systems.I. Analysis of Condition-based Maintenance StrategyCondition-based Maintenance
Oliver Watts
06/11/2025
What is the current application status and development trend of medium-voltage switchgear?
What is the current application status and development trend of medium-voltage switchgear?
With the accelerated automation of power equipment, various medium-voltage switchgear have emerged in the market. Classified by insulation media, they are mainly divided into air-insulated, SF₆ gas-insulated and solid-insulated types, each with its own advantages and disadvantages: solid insulation offers good performance but poor environmental friendliness, SF₆ features excellent arc extinguishing capability but is a greenhouse gas, and air insulation has high cost-performance but larger volume
Echo
06/11/2025
What components make up the design of medium-voltage ring network distribution switchgear?
What components make up the design of medium-voltage ring network distribution switchgear?
As an expert who has been deeply engaged in the field of power system design for many years, I have always paid attention to the technological evolution and application practice of medium-voltage ring main distribution equipment. As a core electrical device in the secondary distribution link of the power system, the design and performance of such equipment are directly related to the safe and stable operation of the power supply network. The following is a professional analysis of the key design
Dyson
06/11/2025
What aspects should be paid attention to when installing medium-voltage switch cabinets during the initial stage of subway operation?
What aspects should be paid attention to when installing medium-voltage switch cabinets during the initial stage of subway operation?
1. Statistics on Common Faults of Medium-Voltage Switchgear in the Early Operation StageAs project participants, we found during the early operation of a new metro line: 21 sets of power supply equipment were put into use, with a total of 266 accident phenomena in the first year. Among them, 77 faults occurred in medium-voltage switchgear, accounting for 28.9%—significantly higher than faults in other equipment. Statistical analysis shows that major fault types include: protection device s
Felix Spark
06/11/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!