What components make up the design of medium-voltage ring network distribution switchgear?

Dyson
06/11/2025

As an expert who has been deeply engaged in the field of power system design for many years, I have always paid attention to the technological evolution and application practice of medium-voltage ring main distribution equipment. As a core electrical device in the secondary distribution link of the power system, the design and performance of such equipment are directly related to the safe and stable operation of the power supply network. The following is a professional analysis of the key design points of ring main distribution equipment, combining industry standards and engineering practices.
1. Overall Design Logic and Architecture Planning
The design of ring main distribution switchgear must strictly align with the operation requirements of the power system and national standards. It should focus on usage scenarios, control objects, and the characteristics of core electrical components to build a functional unit system. The main switches are mainly configured as circuit breakers and load switches, and a small number use combined electrical appliances. During the design, priority is given to the “load switch + fuse” combined circuit—this type of circuit has a complex structure and can serve as a reference for determining the overall structure, layout, and external dimensions of the equipment. Other circuits, such as pure load switch circuits, should reuse its mature design as much as possible to achieve standardization and universality.
Based on the above foundation, multiple types of cabinets are derived: load switch cabinets, combined electrical appliance cabinets, circuit breaker cabinets, multi-circuit cabinets, etc. The design of the primary conductive circuit needs to systematically consider three core elements: current-carrying capacity, electric force withstand capability, and heat dissipation efficiency:
  • Component Arrangement: Skillfully utilize the closing electric force to ensure that the moving contacts do not withdraw during the dynamic and thermal stability tests, achieving the coordination of mechanical and electrical performance.
  • Busbar Selection: Precisely match circular or flat busbars according to the current-carrying capacity, reasonably control the current density, and balance current-carrying and heat dissipation.
  • Electrical Connection Optimization: The dynamic and static contacts, sliding/fixed connections must ensure low contact resistance. When connecting different metal conductors, processes such as tinning and silver plating are used to suppress electrochemical corrosion and eliminate the hidden danger of contact failure.
The design of compartments follows the principle of “safety first, process adaptation, and convenient operation and maintenance”: the protection level is not lower than IP3X, the partition material (metal/non-metal) is selected as needed, and pressure relief devices and fault arc limiting measures are configured—during internal arc faults, high-pressure gas can be discharged through the relief channel to ensure the safety of equipment and personnel.
2. Multi-dimensional Considerations for Insulation Structure Design
Switchgear needs to withstand the maximum operating voltage and short-term overvoltage (atmospheric and internal overvoltage) for a long time. The insulation design needs to comprehensively consider factors such as environmental adaptability, material selection, structure optimization, and process control:
(1) Electric Field Optimization and Insulation Coordination
The shape of conductors directly affects the electric field distribution inside the cabinet. In the design, rounded copper bars, round bar busbars should be used, and the shapes of dynamic and static contact seats, internal conductors, and support electrodes should be optimized to eliminate sharp points and edges, making the electric field more uniform. With the help of finite element analysis software (such as ANSYS Maxwell), the weak insulation links can be accurately located. Through layout adjustment and structure optimization (such as the application of shielding technology), the electric field can be uniformized and the maximum field strength can be reduced, improving insulation reliability.
(2) Application Logic of Multiple Insulation Media
  • Air Insulation: For composite insulation with air as the main body, the electrical clearance and creepage distance specified by the standards must be strictly followed in the design to balance insulation performance and equipment compactness.
  • Gas Insulation: Gas-insulated cabinets mostly use SF₆, N₂, dry compressed air, or mixed gases as insulation media (in the low-pressure range). Although the gas pressure is not high, the sealing design is crucial—attention must be paid to the component changes of the gas due to permeation during long-term operation (such as air infiltration and insulation gas exudation). For gas-filled compartments without arc decomposition products, the moisture content must be precisely controlled: when the rated pressure ≤ 0.05MPa, it should be ≤ 2000μL/L; when > 0.05MPa, the allowable value of moisture content is calculated according to the saturated water vapor pressure at -10°C.
  • Interface and Solid Insulation: When solid insulation parts are butted, elastic materials such as silicone rubber are used to eliminate air gaps and improve the interface insulation level (related to surface pressure, finish, and contact length). Using materials such as epoxy resin and silicone rubber to cast and vulcanize and package high-voltage components, and covering them with a grounding/semiconductive layer, can significantly improve the safety level, reduce the equipment volume, and simplify the layout.
3. Precise Design of Mechanical Transmission and Interlocking System
Mechanical transmission covers links such as circuit breaker operating mechanisms, disconnectors, earthing switches, and door interlocks. The design needs to be optimized from dimensions such as principle, layout, force mode (pressure/tension), span, transmission ratio, stroke angle, and mechanical efficiency: simplify the structure, reduce the number of parts, and lower the operating force, achieving “reasonable force bearing, reliable transmission, stable operation, and convenient operation and maintenance”.
The “five-prevention” interlocking is the core of ensuring operation safety—mechanical interlocking is preferred (composed of levers, connecting rods, baffles, etc. to form a lock, with clear procedures, intuitive and reliable); if the components are far apart or mechanical interlocking is difficult to implement, electrical interlocking is supplemented; intelligent cabinets can be superimposed with microcomputer software programming interlocking (used in conjunction with mechanical interlocking) to build a multi-level safety protection system.
4. Construction of a Reliable Earthing System
The earthing design needs to cover the dual requirements of “operation safety” and “fault withstand”:
  • During maintenance, the earthing switch can reliably earth the main circuit according to regulations.
  • The bottom frame of the shell is equipped with earthing conductors and terminals suitable for fault conditions, and the cabinets are interconnected by conductors, with a dedicated circuit between the earthing switch and the earthing conductor.
  • The earthing conductors, connection circuits, and connections between cabinets must withstand the rated short-time/peak withstand current.
  • The frame, cover plate, door, partition, and other components are electrically continuous to ensure the earthing connection of functional units.
  • The DC voltage drop from any point of the shell metal parts to the earthing conductor through 30A is ≤ 3V, ensuring the effectiveness of earthing.
5. Technological Evolution and Development Direction
With the process of power grid transformation and cable undergrounding, multi-circuit distribution units are rapidly iterating towards “miniaturization, modularization, and automation”, which drives the innovative development of SF₆ and composite insulation technologies and high-performance components. In the future, it is necessary to focus on manufacturing process upgrades (such as precision processing and integrated packaging), optimization of cable connectors, iteration of current-limiting fuses, research and development of small operating mechanisms, and innovation of auxiliary components, so as to improve the design and manufacturing level of domestic ring main distribution equipment. Developing a new generation of ring main cabinets with “full working condition adaptation, maintenance-free, high reliability, and miniaturization” to enable distribution automation will become a key direction for industry breakthroughs.
Dyson

Focused on the design of electrical equipment, proficient in electrical principles and relevant specifications, and skilled in using design software. From intelligent substations to various types of electrical equipment, I am adept at optimizing design solutions, integrating new technologies. With practical experience and collaborative management capabilities, I deliver outstanding electrical design achievements.

Research on Low - Voltage Anti - DC Current Transformer and Detection Device
Research on Low - Voltage Anti - DC Current Transformer and Detection Device
1. Overview of Components and IssuesTA (low-voltage current transformer) and electric energy meters are key components of low-voltage electric energy metering. The load current of such meters is no less than 60A. Electric energy meters vary in type, model, and anti-DC performance, and are connected in series in the metering device. Due to the lack of anti-DC capability, they suffer from metering errors under DC component loads, usually caused by non-linear loads. With the increasing use of DC or
Dyson
07/16/2025
Anti - Theft Device for Low - Voltage Current Transformers
Anti - Theft Device for Low - Voltage Current Transformers
1. Innovation BackgroundWith the progress of society and economic development, the electricity demand of power users is expanding increasingly. Lawbreakers, aiming to save electricity costs and pursue high profits, gradually use high - tech methods to steal electricity, causing huge economic losses to power supply enterprises. Currently, popular electricity theft methods in the market include illegally opening the wiring cover of low - voltage transformers in electric energy metering boxes, alte
Dyson
07/16/2025
What aspects should be taken into consideration during the design of AIS voltage transformers?
What aspects should be taken into consideration during the design of AIS voltage transformers?
I. Key Elements of Mechanical Structure DesignThe mechanical structure design of AIS voltage transformers ensures long - term stable operation. For 66 kV outdoor AIS voltage transformers (pillar - type structure):Pillar Material: Use epoxy resin casting + metal frame for mechanical strength, pollution/weather resistance. Special design needed for 66 kV (vs 35 kV & below). Dry - type insulation (porcelain/epoxy shell) requires sufficient bending/impact resistance for harsh outdoors.Heat Dissi
Dyson
07/15/2025
Analysis of Gas Concentration in High - Voltage Reactors of Large - Scale Hydroelectric Generator Sets
Analysis of Gas Concentration in High - Voltage Reactors of Large - Scale Hydroelectric Generator Sets
1.Gas Generation and Analysis Principle of High - Voltage ReactorsHigh - voltage reactors use oil and insulating paper for insulation. Normal operation may see local overheating or discharges (e.g., iron core/winding issues, inter - turn short circuits), causing insulation cracking and producing gases like hydrocarbons (methane, etc.), CO, CO2, H2). These gases reflect internal insulation status, enabling real - time monitoring.For closed oil - filled reactors, insulation aging and oil oxidation
Oliver Watts
07/11/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!