What is the method for determining the temperature of a coil?

01/10/2025

Methods to Determine Coil Temperature

There are several methods to determine coil temperature, and the choice depends on the application scenario, required accuracy, and available equipment and technology. Below are some commonly used methods to determine coil temperature:

1. Direct Measurement Methods

a. Thermocouples

  • Principle: Thermocouples utilize the thermoelectric effect produced by the contact of two different metal materials to measure temperature.

  • Usage: Install the thermocouple probe near or within the coil. Connect it to a temperature reading device to monitor temperature changes in real-time.

  • Advantages: Fast response time, suitable for high-temperature environments.

  • Disadvantages: Requires physical contact, which may affect normal coil operation; complex installation.

b. Resistance Temperature Detectors (RTDs)

  • Principle: RTDs measure temperature based on the characteristic that the resistance of metals changes with temperature.

  • Usage: Install the RTD sensor near or within the coil and measure its resistance to calculate temperature.

  • Advantages: High accuracy and stability.

  • Disadvantages: Slower response time compared to thermocouples; higher cost.

c. Infrared Thermometers

  • Principle: Infrared thermometers measure surface temperature by detecting the infrared radiation emitted by an object.

  • Usage: Non-contact measurement; simply aim the thermometer at the target area to take a reading.

  • Advantages: Non-contact, suitable for hard-to-reach or moving objects.

  • Disadvantages: Affected by environmental factors such as dust and humidity; relatively lower accuracy compared to direct contact methods.

2. Indirect Measurement Methods

a. Copper Loss Method

Principle: Estimate temperature based on changes in current and resistance within the coil. Copper losses (I²R) increase with temperature because conductor resistance increases with temperature.

Usage:

  • Measure the DC resistance of the coil in a cold state.

  • During operation, measure current and voltage to calculate copper losses.

Use the resistance temperature coefficient (α) formula to calculate temperature changes:

7ee5df8e690a208d2f03a5251653e13c.jpeg

where RT is the resistance during operation, R0 is the resistance in the cold state, α is the resistance temperature coefficient, T is the operating temperature, and T0 is the cold-state temperature.

  • Advantages: Does not require additional sensors, suitable for setups that already have current and voltage measurement devices.

  • Disadvantages: Relies on multiple assumptions, accuracy depends on initial measurements.

b. Thermal Network Model

Principle: Establish a thermal transfer model for the coil and its surrounding environment, considering heat conduction, convection, and radiation, to simulate temperature changes.

Usage:

  • Create a thermal network model of the coil and its cooling system.

  • Input operational parameters (e.g., current, ambient temperature), and use numerical simulation to calculate temperature distribution.

  • Advantages: Can predict temperature changes under complex conditions, suitable for design and optimization phases.

  • Disadvantages: Complex model requiring detailed data and computational resources.

c. Fiber Optic Temperature Sensors

  • Principle: Fiber optic temperature sensors use optical properties (such as Brillouin scattering, Raman scattering) that change with temperature to measure temperature.

  • Usage: Embed or wrap fiber optic sensors around the coil and use optical signal transmission and analysis to obtain temperature information.

  • Advantages: Resistant to electromagnetic interference, suitable for high-voltage and strong magnetic field environments.

  • Disadvantages: Higher cost and more complex technology.

3. Combined Methods

In practical applications, multiple methods are often combined to improve measurement accuracy and reliability. For example, thermocouples or RTDs can be installed at critical locations for direct measurement, while the copper loss method or thermal network models can be used for auxiliary calculations and validation.

Conclusion

Methods to determine coil temperature include both direct and indirect measurement approaches. Direct measurement methods, such as thermocouples, RTDs, and infrared thermometers, are suitable for scenarios requiring real-time monitoring. Indirect measurement methods, including the copper loss method, thermal network models, and fiber optic temperature sensors, are suited for specific applications or design optimization phases. Choosing the appropriate method based on specific needs and conditions ensures the safe operation and performance stability of the coil.

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is the difference between a dielectric and an insulator?
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
08/30/2025
Transformer Connection Sections
Transformer Connection Sections
Transformer Connection DesignationsThe transformer connection designation indicates the winding connection method and the phase relationship between the line voltages of the primary and secondary windings. It consists of two parts: letters and a number. The letters on the left denote the connection configurations of the high-voltage and low-voltage windings, while the number on the right is an integer from 0 to 11.This number represents the phase shift of the low-voltage winding's line voltage r
08/15/2025
Automatic Reclosing Scheme in Transmission Systems
Automatic Reclosing Scheme in Transmission Systems
Automatic Reclosing Scheme for Transmission SystemsThe automatic reclosing system is a series-connected network designed to reduce operating costs and enhance network reliability. Extra-high voltage (EHV) transmission lines are used to transmit large amounts of power, on the order of thousands of megawatts (MW), and therefore should not be interrupted at all costs. Although faults on these overhead lines are common, the power transmitted through them should not be interrupted for long periods du
08/07/2025
Transformer operation and maintenance
Transformer operation and maintenance
Transformer Operating TemperatureDuring operation, transformers generate copper losses and iron losses, both of which are converted into heat, causing the transformer’s temperature to rise. Most transformers in China use Class A insulation. Due to heat transfer characteristics, significant temperature differences exist between different components during operation: winding temperature is the highest, followed by the core, and then the temperature of the insulating oil (with upper-layer oil being
07/31/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!