• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


RC Phase Shift Oscillator

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

What Is Rc Phase Shift Oscillator

RC phase-shift oscillators use resistor-capacitor (RC) network (Figure 1) to provide the phase-shift required by the feedback signal. They have excellent frequency stability and can yield a pure sine wave for a wide range of loads.
rc phase shift network
Ideally a simple RC network is expected to have an output which leads the input by 90o.

However, in reality, the phase-difference will be less than this as the capacitor used in the circuit cannot be ideal. Mathematically the phase angle of the RC network is expressed as

Where, XC = 1/(2πfC) is the reactance of the capacitor C and R is the resistor. In oscillators, these kind of RC phase-shift networks, each offering a definite phase-shift can be cascaded so as to satisfy the phase-shift condition led by the Barkhausen Criterion.

One such example is the case in which RC phase-shift oscillator is formed by cascading three RC phase-shift networks, each offering a phase-shift of 60o, as shown by Figure 2.
rc phase shift oscillator using bjt
Here the collector resistor RC limits the collector current of the transistor, resistors R1 and R (nearest to the transistor) form the voltage divider network while the emitter resistor RE improves the stability. Next, the capacitors CE and Co are the emitter by-pass capacitor and the output DC decoupling capacitor, respectively. Further, the circuit also shows three RC networks employed in the feedback path.

This arrangement causes the output waveform to shift by 180o during its course of travel from output terminal to the base of the transistor. Next, this signal will be shifted again by 180o by the transistor in the circuit due to the fact that the phase-difference between the input and the output will be 180o in the case of common emitter configuration. This makes the net phase-difference to be 360o, satisfying the phase-difference condition.
One more way of satisfying the phase-difference condition is to use four RC networks, each offering a phase-shift of 45o. Hence it can be concluded that the RC phase-shift oscillators can be designed in many ways as the number of RC networks in them is not fixed. However it is to be noted that, although an increase in the number of stages increases the frequency stability of the circuit, it also adversely affects the output frequency of the oscillator due to the loading effect.
The generalized expression for the frequency of oscillations produced by a RC phase-shift oscillator is given by

Where, N is the number of RC stages formed by the resistors R and the capacitors C.
Further, as is the case for most type of oscillators, even the RC phase-shift oscillators can be designed using an OpAmp as its part of the amplifier section (Figure 3). Nevertheless, the mode of working remains the same while it is to be noted that, here, the required phase-shift of 360o is offered collectively by the RC phase-shift networks and the
Op-Amp working in inverted configuration.
rc phase shift oscillator using an op amp
Further, it is to be noted that the frequency of the RC phase-shift oscillators can be varied by changing either the resistors or the capacitors. However, in general, the resistors are kept constant while the capacitors are gang-tuned. Next, by comparing the RC phase-shift oscillators with LC oscillators, one can note that, the former uses more number of circuit components than the latter one. Thus, the output frequency produced from the RC oscillators can deviate much from the calculated value rather than in the case of LC oscillators. Nevertheless, they are used as local oscillators for synchronous receivers, musical instruments and as low and/or audio-frequency generators.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
PT Fuse Slow Blow: Causes, Detection & Prevention
PT Fuse Slow Blow: Causes, Detection & Prevention
I. Fuse Structure and Root Cause AnalysisSlow Fuse Blowing:From the design principle of fuses, when a large fault current passes through the fuse element, due to the metal effect (certain refractory metals become fusible under specific alloy conditions), the fuse first melts at the soldered tin ball. The arc then rapidly vaporizes the entire fuse element. The resulting arc is quickly extinguished by quartz sand.However, due to harsh operating environments, the fuse element may age under the comb
Edwiin
10/24/2025
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Common Causes of Fuse BlowingCommon reasons for fuse blowing include voltage fluctuations, short circuits, lightning strikes during storms, and current overloads. These conditions can easily cause the fuse element to melt.A fuse is an electrical device that interrupts the circuit by melting its fusible element due to heat generated when current exceeds a specified value. It operates on the principle that, after an overcurrent persists for a certain period, the heat produced by the current melts
Echo
10/24/2025
Fuse Maintenance & Replacement: Safety and Best Practices
Fuse Maintenance & Replacement: Safety and Best Practices
1. Fuse MaintenanceFuses in service should be regularly inspected. The inspection includes the following items: Load current should be compatible with the rated current of the fuse element. For fuses equipped with a fuse blown indicator, check whether the indicator has actuated. Check the conductors, connection points, and the fuse itself for overheating; ensure connections are tight and making good contact. Inspect the fuse exterior for cracks, contamination, or signs of arcing/discharge. Liste
James
10/24/2025
Maintenance and Repair Items for 10kV High-Voltage Switchgear
Maintenance and Repair Items for 10kV High-Voltage Switchgear
I. Routine Maintenance and Inspection(1) Visual Inspection of Switchgear Enclosure No deformation or physical damage to the enclosure. Protective paint coating shows no severe rust, peeling, or flaking. Cabinet is securely installed, clean on the surface, and free of foreign objects. Nameplates and identification labels are neatly affixed and not falling off.(2) Check of Switchgear Operating Parameters Instruments and meters indicate normal values (comparable to typical operating data, with no s
Edwiin
10/24/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.