Blocked Rotor Test of an Induction Motor

05/24/2025

The blocked - rotor test of an induction motor is analogous to the short - circuit test of a transformer. In this test, the motor's shaft is immobilized to prevent any rotation, and the rotor winding is short - circuited. For a slip - ring motor, the rotor winding is short - circuited via the slip rings. In the case of cage motors, the rotor bars are inherently short - circuited. This test is also referred to as the Locked Rotor Test. The circuit diagram for the blocked - rotor test is presented below:

A reduced voltage at a reduced frequency is supplied to the stator via a three - phase autotransformer, ensuring that the full - load rated current circulates in the stator. The blocked - rotor test yields the following three measurements:
  • Total power input during short - circuit Psc: This is the algebraic sum of the readings from the two wattmeters. The power input during the blocked - rotor test is equivalent to the combined copper losses of the stator and rotor for all three phases. Since a reduced voltage is applied to the stator, thereby preventing rotor rotation, core and mechanical losses can be disregarded.
  • Ammeter reading

  • Reading of the voltmeter

where cosϕ represents the power factor of the short - circuit. The equivalent resistance of the motor, referred to the stator side, is expressed by the following equation:

The equivalent impedance of the motor referred to the stator side is given by the equation shown below:

The equivalent reactance of the motor referred to the stator side is given by the equation shown below.

The blocked - rotor test is carried out under normal operating conditions, with the rotor current and frequency being in their typical states. Generally, for an induction motor, the slip typically ranges from 2% to 4%. When the stator frequency is 50 hertz under normal conditions, the resulting rotor frequency falls within the range of 1 to 2 hertz.
This test should be executed at a reduced frequency. To achieve accurate results, the blocked - rotor test is performed at a frequency that is 25% or less of the rated frequency. The leakage reactances at the rated frequency are derived based on the principle that reactance is proportional to frequency.
Nevertheless, for motors with a rating of less than 20 kilowatts, the influence of frequency is negligible, and the blocked - rotor test can be directly conducted at the rated frequency.

Wenzhou Rockwell Transformer Co., Ltd. It is a high - tech enterprise integrating R & D, production, sales, and service. It focuses on the manufacturing of power transformers and supporting equipment, and is committed to providing efficient, reliable, and energy - saving power transmission and distribution solutions for global customers. We can offer: •Distribution transformers and substations •Outdoor switchgears and breakers(recloser) •Switchgears and it’s components (GIS, RMU, VCB, SF6 CB) Market and Service: We always take customers as the orientation and provide customized services according to their requirements. Our products are exported to the Middle East, Africa, Northern Europe, South America, and many other countries and regions. Drive the future of electricity with technological innovation and become a leading global supplier of intelligent power equipment.

Fault Analysis and Treatment of Oil-Immersed Transformers
Fault Analysis and Treatment of Oil-Immersed Transformers
Oil Leakage at Welded JointsOil leakage at welded joints primarily stems from poor welding quality, such as incomplete or detached welds, and defects like pinholes and gas pores. Although oil-immersed transformers are initially coated with solder and paint during manufacturing, potentially masking these issues temporarily, the defects tend to surface during operation. Additionally, electromagnetic vibration can cause weld cracks, leading to oil leakage.To resolve such leaks, the first critical s
08/29/2025
What losses occur during operation of the transformer? How to reduce losses?
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Transformer Detection, Testing, Maintenance and Servicing
Transformer Detection, Testing, Maintenance and Servicing
Transformer testing, inspection, and maintenance are essential tasks to ensure normal operation and extend the service life of transformers. Below are some recommended steps:Visual Inspection: Regularly inspect the transformer's exterior, including the enclosure, cooling system, and oil tank. Ensure the enclosure is intact, free from corrosion, damage, or leakage.Insulation Resistance Testing: Use an insulation resistance tester to check the transformer's insulation system. Verify that the insul
Vziman
08/29/2025
Preventive Detection and Testing of Transformers
Preventive Detection and Testing of Transformers
I. DC Resistance Test of Transformer Primary and Secondary Windings:The DC resistance of transformer primary and secondary windings can be measured using the four-wire (Kelvin) method, which is based on principles related to accurate resistance measurement.In the four-wire method, two test leads are connected to both ends of the winding under test, while the other two leads are connected to adjacent winding terminals. An AC power source is then applied to the two leads connected to the adjacent
Rockwell
08/28/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!